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Abstract

Recent work by Maier and Kallmeyer (2010) on data-driven constituent

parsing of German text has used Probabilistic Linear Context-Free

Rewriting Systems (PLCFRS), a generalization of Probabilistic Context-

Free Grammars (PCFG) that allows for discontinuous constituents in

the resulting syntactic representations. This makes it possible to rec-

ognize certain types of non-local dependencies directly in parsing.

This master’s thesis transfers their approach from parsing German

to parsing English. Its main contributions are 1) a method for creating a

discontinuous constituent treebank of English by automatic conversion

from the syntactic annotation of the Penn Treebank, 2) presenting what

are to the author’s best knowledge the first experimental results on

large-scale discontinuous constituent parsing of English.

The existing techniques used for extracting PLCFRSs from tree-

banks and parsing with them are described in detail. Special attention

is given to methods for tuning PLCFRSs for speed and accuracy and

the effect of these methods on the English data. Finally, a detailed ana-

lysis of the resulting parses with respect to discontinuous constituents

reveals strengths and weaknesses of the current setup and points to

possible routes for further work on the annotation scheme, the parsing

model and the tuning methods.
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Zusammenfassung

Für das datengetriebene konstituentenbasierte syntaktische Parsing von

deutschsprachigem Text ist von Maier und Kallmeyer (2010) die Be-

nutzung von Probabilistic Context-Free Rewriting Systems (PLCFRS)

erprobt worden. Dieser Formalismus stellt eine Generalisierung proba-

bilistischer kontextfreier Grammatiken (PCFG) dar. Die syntaktischen

Repräsentationen von PLCFRS lassen diskontinuierliche Konstituenten

zu, was es ermöglicht, bestimmte Typen nicht lokaler Abhängigkeiten

direkt im Parsing-Vorgang zu erkennen.

Die vorliegende Arbeit überträgt diesen Ansatz vom Deutschen auf

das Englische. Ihre Hauptbeiträge sind 1) eine Methode zur Erstellung

einer diskontinuierlichen Konstituentenbaumbank des Englischen durch

automatische Konversion der syntaktischen Annotation der Penn Tree-

bank und 2) die nach dem Wissen des Autors ersten Ergebnisse größer

angelegter Experimente zum Parsing englischen Textes mit diskontinu-

ierlichen Konstituenten.

Die bestehenden Verfahren zur Extraktion von PLCFRS-Gramma-

tiken aus Baumbanken und zum Parsing mit PLCFRS werden im De-

tail beschrieben. Ein Schwerpunkt der Darstellung liegt auf Methoden,

Grammatiken mit Blick auf Parsing-Effizienz und -Performanz zu opti-

mieren, sowie auf der Wirksamkeit dieser Methoden auf den englisch-

sprachigen Daten. Eine detailierte Analyse der Parsing-Ergebnisse hin-

sichtlich diskontinuierlicher Konstituenten zeigt schließlich Stärken und

Schwächen der verwendeten Parameter auf und deutet auf Möglichkei-

ten weiterer Verbesserung durch Veränderungen am Annotationssche-

ma, am Parsing-Modell und an den Optimierungsmethoden hin.
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Chapter 1.

Introduction

1.1. Motivation

Syntactic parsing is a fundamental component in many natural-language processing

applications. Its input is text in the form of a sequence of tokens, i.e. words and

punctuation marks. Its output is a syntactic representation containing information about

the relations in which tokens in the sentence stand to each other and what syntactic

functions they fulfill. Syntactic representations serve as the input to further processing,

e.g. for information extraction or for machine translation.

One of the most widely used kinds of syntactic representation is phrase structure

trees, one per sentence, describing a derivation of the sentence in a Context-Free Gram-

mar (CFG). This kind of representation embodies the notion that a sentence is re-

cursively built up from smaller units called constituents or phrases which can also be

regarded in isolation and have syntactic structure and meaning on their own. Consider

sentence 1.1:

(1.1) Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.

Here, the tokens of Elsevier N.V., the Dutch publishing group would widely be con-

sidered to form a constituent, more specifically a noun phrase (NP). This is expressed by

the tree in Figure 1.11 in that these words are the leaves of a subtree, rooted in the PP

(prepositional phrase) node. Note that if the tree is supposed to represent a derivation

1All tree diagrams with natural language examples in this thesis have been generated from the original
syntactic annotation, or a transformed version of the syntactic annotation, or parse trees produced
automatically from sentences in, the WSJ part of the Penn Treebank, using the TIGERSearch
software (Lezius, 2002).

9
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Figure 1.1.: A phrase structure tree from the WSJ treebank
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Figure 1.2.: A phrase structure tree from the German treebank NEGRA

tree of the sentence in a CFG, the tokens in each constituent are required to form a

continuous subsequence of the sentence. However, this restriction is not shared by all

constituent-based theories of syntax. Consider the German sentence 1.2:

(1.2) Ohne
without

an
on

Sarkasmus
sarcasm

grenzende
bordering

Ironie
irony

scheint
seems

Turrini
Turrini

dabei
in doing so

nicht
not

ausgekommen
managed

zu
to

sein
have

:
:

“Turrini seems not to have managed to do so without irony bordering on
sarcasm:”

Here, the discontinuous subsequence ohne an Sarkasmus grenzende Ironie ... nicht

ausgekommen (“not managed without irony bordering on sarcasm”) can be said to form

a discontinuous constituent, more specifically a verb phrase (VP), and the complement

ohne an Sarkasmus grenzende Ironie occupies a position detached from the rest of the
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Figure 1.3.: Penn Treebank annotation of an extraposed relative clause

phrase. The tree in Figure 1.2 accordingly groups them under a common node. This

creates crossing branches in the tree and makes it impossible to interpret it as a context-

free derivation of the sentence.

Phenomena where two non-adjacent parts of a sentence logically belong together are

known as non-local dependencies, or long-distance dependencies, or long-range dependen-

cies. Although they are especially frequent in languages with relatively free word order

– such as German – English has its share of them too. Consider sentence 1.3:

(1.3) Areas of the factory were particularly dusty where the crocidolite was used.

Here, the extraposed relative clause where the crocidolite was used modifies the noun

phrase Areas of the factory and could therefore be directly grouped with it under the

same node. Similar discontinuous analyses of English syntax have long been argued

for, see e.g. McCawley (1982). Still, a majority of syntactic analyses of English opt

for context-free trees, i.e. the absence of crossing branches. In such cases, non-local

dependencies are either not represented or represented using additional structure on top

of the trees.

This concerns, for instance, treebanks. A treebank is a large collection of text where

the sentences have been manually annotated with the corresponding syntactic represen-

tation. One of the largest and most widely used English treebanks is the Wall Street

Journal part of the English Penn Treebank (Marcus et al., 1993), henceforth called the

WSJ treebank. It consists of context-free trees which, to represent non-local dependen-

cies, contain additional leaves called null elements which do not correspond to any token
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occurring in the text, and are decorated with secondary edges. For example, consider

the analysis for sentence 1.3, shown in Figure 1.3. Here, a secondary edge connects

the SBAR node rooting the extraposed relative clause to a null element which marks a

position inside the noun phrase that the relative clause modifies.

Fostered by and fostering the wide availability of context-free English treebanks,

context-free trees are also a standard syntactic representation of choice for data-driven

parsing of English. In data-driven parsing, treebanks are used as input to a process of

training, i.e. automatically extracting rules which can then be used to parse previously

unseen text. A standard technique is to extract Probabilistic Context-Free Grammars

(PCFG) and use these for parsing. This approach cannot deal with discontinuous con-

stituents and it does not take into account secondary edges, thus the output of the

parser does not contain information on non-local dependencies. Such information can,

however, be vital for correctly interpreting sentences in further processing steps in an

application.

Only recently has data-driven parsing with discontinuous constituents been attempted.

Plaehn (2004) describes a probabilistic parsing algorithm for Discontinuous Phrase

Structure Grammar (DPSG), a grammar formalism in which the derivation trees may

contain crossing branches. Another such grammar formalism, with lower parsing com-

plexity, is Linear Context-Free Rewriting Systems (LCFRS), a generalization of CFG.

Maier and Kallmeyer (2010) adopt the PCFG approach to it and use it for data-driven

parsing of German. They achieve accuracy comparable with previous results for par-

sing German while producing syntactic representations that are more informative than

context-free trees. This suggests that it may be possible to overcome the limitations of

current standard approaches to parsing English, concerning non-local dependencies, in

a similar manner. Another approach to data-driven LCFRS parsing is presented, but

not experimentally explored, in Levy (2005, Chapter 4).

1.2. Thesis aims

The primary aim of this thesis is to present a methodology and first results for parsing

English text using a probabilistic treebank LCFRS which encodes non-local dependen-

cies using discontinuous constituents. To this end, parsing experiments are carried out

using the parser of Maier and Kallmeyer (2010) with probabilistic LCFRSs (PLCFRSs)

extracted from the WSJ treebank using the extraction algorithm of Maier and Søgaard



Introduction 13

(2008), after transforming the treebank to a format where non-local dependencies are

encoded using discontinuous constituents, as far as possible. A secondary aim is to

provide a detailed discussion of how such a transformation can be carried out automati-

cally, and how problematic cases can be treated. A final aim is to evaluate the approach

with respect to the additional information that the parse trees provide compared with

context-free parses, i.e. which types of non-local dependencies are correctly captured

and which ones still pose problems.

1.3. Related work

While the above-mentioned body of work on data-driven discontinuous constituent pars-

ing is still small, there are other means to automatically obtain syntactic representations

with both local and non-local dependencies. Most work to date has to this end combined

context-free parsers such as those of Collins (1999) or Charniak (2000) with preprocessing

and/or postprocessing steps and carried out experiments on the WSJ treebank. Follow-

ing Nivre (2006) and using the terminology of Cahill et al. (2004), these approaches can

be classified into two broad categories: pipeline approaches and integrated approaches.

A further possibility to obtain both local and non-local dependencies, besides discontin-

uous constituent parsing, is (non-projective) dependency parsing. The three classes of

approaches are briefly presented in the following sections.

1.3.1. Pipeline approaches

Pipeline approaches take the output of a context-free parser trained on a normal context-

free treebank and then try to recover non-local dependencies from the parse trees. Non-

local dependencies are frequently encoded by adding indices and null elements, using

the same format as in the original treebank and thus facilitating evaluation against the

gold standard.

The method of Johnson (2002) finds pairs of nodes likely to be in a non-local depen-

dency relationship by searching in the parse trees for tree fragments found to frequently

connect non-locally dependent nodes in the gold standard trees.

Jijkoun and de Rijke (2004) convert parse trees to dependency graphs (cf. Sec-

tion 1.3.3), then use memory-based learning with a variety of features extracted from
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gold-standard trees subjected to the same dependency conversion to determine where

nodes and edges should be inserted, deleted or relabeled.

The method presented in Levy and Manning (2004) and Levy (2005, Chapter 3)

similarly uses machine learning with various contextual features, but operates directly

on the constituent trees and is more focused on the task of inserting specific types of

null elements and indices in the Penn Treebank annotation scheme. A parsing system

which uses a similar postprocessing method after recovering function tags which help in

recovering non-local dependencies is presented in Gabbard et al. (2006).

Campbell (2004) presents a method that abstains from probabilistic inference and

uses a completely hand-crafted algorithm for recovering non-local dependencies based

on linguistic principles.

1.3.2. Integrated approaches

Integrated approaches are integrated in the sense that the training treebank is already

enriched with additional information about non-local dependencies, in the form of null

elements and/or enhanced node labels. Thus, the probabilistic context-free parser is

at least implicitly aware of non-local dependencies and their distributional properties.

Sometimes the probabilistic models of parsers are modified to explicitly take non-local

dependencies into account. In integrated approaches, parsers produce parse trees from

whose null elements and/or enhanced node labels non-local dependencies can be read

off more or less directly. The term “integrated” should not imply that producing the

syntactic representations from text invariably consists of a single (parsing) step, some

preprocessing and/or postprocessing may be needed.

Model 3 of Collins’ parser (Collins, 1999) and the method of Dienes and Dubey

(2003) use null elements (traces) to mark the phrases which are in a non-local dependency

relationship with a distant element. Collins makes this possible by extending his parsing

model to allow a limited treatment of empty elements, Dienes and Dubey use a shallow

trace tagger to insert traces into the text before parsing. Both methods use enhanced

non-terminals to propagate information about traces and extracted elements in the tree;

both methods also need postprocessing to assign traces to the constituent at the other

end of the non-local dependency.

Hockenmaier (2003) converts the WSJ treebank to normal-form derivation trees for

Combinatory Categorial Grammar (CCG), whose complex categories and combinatory
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rules, together with indices manually inserted into some lexical categories, represent

non-local dependencies explicitly so they can be found by a context-free parser without

a need for null elements.

Cahill et al. (2004) present an approach similar to that of Johnson (2002) in that

dependencies are found by probabilistic inference from parts of the tree (paths in this

case) connecting the two dependent nodes. Since their format for representing non-local

dependencies is based on enhanced node labels and does not use null elements, they can

not only use their algorithm as a postprocessing step but also apply it to the training

corpus and extract a “non-local-dependency-aware” grammar to use in an integrated

approach, which they find to yield superior results.

1.3.3. Dependency parsing

Dependency-based methods for syntactic parsing produce syntactic structures that do

not employ the notion of constituents or phrases but consist only of dependencies be-

tween individual words in the sentence. These structures are called dependency graphs.

While phrase structure trees represent local dependencies as sister relations and non-local

dependencies through additional devices such as secondary edges, dependency graphs

represent both types of dependencies in the same format, making it a natural choice of

representation for further processing even when parsing was done with a constituent-

based parser. Various methods for converting constituent trees to dependency graphs

have been designed for facilitating semantic interpretation, including that used as part

of Jijkoun and de Rijke (2004)’s dependency recovery method and that included with

recent versions of the Stanford parser (de Marneffe et al., 2006).

As Levy (2005) shows, the distinction between context-free and discontinuous trees

has a direct equivalent in dependency graphs under standard conversion methods, viz.

the distinction between projective and non-projective dependency graphs. The relation

between both kinds of syntactic structures is further formalized and explored in Maier

and Lichte (2009).

Dependency parsing is the process of directly producing dependency graphs from

text. Some dependency parsing algorithms, such as that of Nivre (2003), can only

produce projective graphs and thus cannot recognize non-local dependencies. However,

state-of-the-art data-driven dependency parsers (McDonald et al., 2005; Nivre et al.,

2007) can handle non-projective dependencies. These parsers are not grammar-based,



16 Introduction

and dependency parsing in general is less strongly influenced by formal grammar than

constituent parsing, where CFG as a very well-understood grammar formalism is still

very dominating. This may be an important reason why non-local dependencies seem

better integrated in the dependency parsing world today than in constituent parsing.

1.4. Structure of the thesis

The remainder of the thesis is structured as follows. Chapter 2 gives an introduc-

tion to Linear Context-Free Rewriting Systems (LCFRSs) and probabilistic LCFRSs

(PLCFRSs) and presents the algorithms for extracting a PLCFRS from a treebank as

well as for parsing text with a PLCFRS. Chapter 3 discusses the way non-linear depen-

dencies are annotated in the WSJ treebank and develops principles and an algorithm for

automatically incorporating this information into the tree structures by admitting cross-

ing branches. Chapter 4 presents various techniques for tuning treebank PLCFRSs and

surveys their effects on parsing accuracy for a limited test set of test data. In Chapter 5,

a parsing experiment on a larger test set is described, and the parser’s ability to recover

specific types of non-local dependencies is evaluated in detail. Chapter 6 summarizes

and discusses the findings.



Chapter 2.

Linear Context-Free Rewriting Systems

(LCFRS)

This chapter presents the formalism and the essential techniques used for the present

work: Linear Context-Free Rewriting Systems (LCFRS), their probabilistic extension

PLCFRS, the extraction of PLCFRSs from treebanks with discontinuous constituents,

and a CYK parsing algorithm for PLCFRS.

2.1. Introduction to LCFRS

Since the 1980s, it has been known that context-free grammars cannot describe all

natural languages (Shieber, 1985), much less with derivation structures that contain all

the relevant dependencies, since some of them are non-local (Bresnan et al., 1982; Joshi,

1985). There has been considerable interest in grammar formalisms which can describe

non-local dependencies, yet are still restricted enough to not only permit efficient parsing,

but also reflect restrictions that may be found to apply to the syntax of natural language

itself. This led to the definition of mildly context-sensitive formalisms (Joshi, 1985), here

defined following Kallmeyer (2010):

Definition 2.1 (Mild context-sensitivity): In LATEX, everything is a hack.

1. A set of languages L over an alphabet T is mildly context-sensitive iff

a) L contains all context-free languages.

17



18 Linear Context-Free Rewriting Systems (LCFRS)

S(XY Z) → A(X, Y, Z)

A(aX, aY, aZ) → A(X, Y, Z)

A(bX, bY, bZ) → A(X, Y, Z)

A(a, a, a) → ε

A(b, b, b) → ε

Figure 2.1.: Rules of an LCFRS for the language {www|w ∈ {a, b}+}

b) L can describe cross-serial dependencies: there is an n ≥ 2 such that {wk|w ∈
T ∗} ∈ L for all k ≤ n.

c) The languages in L can be parsed in polynomial time.

d) The languages in L have the constant growth property.

2. A formalism is mildly context-sensitive iff the set of languages it can describe is

mildly context-sensitive.

Informally, a language has the constant growth property if the length of its words,

when ordered by length, grows in a linear way. It is defined as follows in Weir (1988):

Definition 2.2 (Constant growth property): Let X be an alphabet and L ⊆ X∗.

L has the constant growth property iff there is a constant c0 > 0 and a finite set of

constants C ⊂ N\{0} such that for all w ∈ L with |w| > c0, there is a w′ ∈ L with

|w| = |w′|+ c for some c ∈ C.

Linear Context-Free Rewriting Systems (LCFRS) (Vijay-Shanker et al., 1987; Weir,

1988) is one of the most powerful known mildly context-sensitive grammar formalisms.

It is equivalent to a number of other formalisms, including Multiple Context-Free Gram-

mars (MCFG) (Seki et al., 1991) and Simple Range Concatenation Grammars (SRCG)

(Boullier, 1998).

In an LCFRS, similarly to a CFG, there are rules with left-hand sides (LHSs) and

right-hand sides (RHSs), and words are derived by recursively applying rules. In contrast

to a CFG, a non-terminal does not yield a single string of terminals, but rather a

vector of strings. The strings in one vector can be interleaved with the strings in other

vectors, thereby creating discontinuities. Every non-terminal A yields vectors with a
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fixed number of dimensions dim(A), called the fan-out of A. The start symbol always

has fan-out 1 since it must yield the whole word.

Rather than the standard notation for LCFRS rules, I will use the SRCG notation

from Boullier (1998) because it is easier to read. Figure 2.1 shows the rules of an example

LCFRS which generates the language {www|w ∈ {a, b}+}, i.e. the language of all words

consisting of three times the same non-empty string of a’s and b’s. Apart from the

start symbol S, there is just one non-terminal, A, with dim(A) = 3. Looking at it in

a bottom-up fashion, the grammar can be thought of as generating all words in the

language by building up triples of identical strings and finally concatenating them. The

fourth and fifth rule provide the starting point for this process; they specify that the

tuples 〈a, a, a〉 and 〈b, b, b〉 are in the yield of A. The second and third rule prepend to

all three parts the same symbol (a resp. b), i.e. they specify that for any triple 〈X, Y, Z〉
in the yield of A, the triples 〈aX, aY, aZ〉 and 〈bX, bY, bZ〉 are also in the yield of A.

Finally, the first rule concatenates the three parts, specifying that the 1-tuple containing

the concatenation of any tuple in the yield of A is in the yield of S.

Definition 2.3 (Linear Context-Free Rewriting System): A linear context-free

rewriting system (LCFRS) is a tuple 〈N, T, V, P, S〉 where

• N, T, V are pairwise disjoint finite sets of symbols. The elements of N are called

non-terminals, those of T terminals and those of V variables.

• Each non-terminal A ∈ N has an associated fan-out dim(A) ≥ 1.

• P is a finite set of rules of the form A(χ01, . . . χ0dim(A)) → A1(χ11, . . . χ1dim(A1)) . . .

Am(χm1, . . . χmdim(Am)) where

– the part left of the arrow is called left-hand side (LHS) and the part right of

the arrow is called right-hand side (RHS),

– m ≥ 0 (called the rank of the rule),

– A,A1, . . . Am ∈ N ,

– χ01, . . . χ0dim(A) ∈ (T ∪ V )∗, are strings of terminals and variables called the

LHS arguments,

– χ11, . . . χ1dim(A1), . . . χm1, . . . χmdim(Am) ∈ V , i.e. each argument of a RHS ele-

ment consists of exactly one variable,
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– every variable occurring in a rule occurs exactly once on the LHS and exactly

once on the RHS.

If m = 0, the RHS is written as ε. The argument vector of a LHS or RHS element

is defined as the vector whose components are the arguments of that LHS or RHS

element, in the same order.

• S ∈ N with dim(S) = 1 is called the start symbol.

An LCFRS G where for all A ∈ N , dim(A) ≤ k is said to have fan-out k and is called a

k-LCFRS. An LCFRS whose rules have a maximal rank m is said to have rank m.

Definition 2.4 (String language of an LCFRS): Let G = 〈N, T, V, P, S〉 be an

LCFRS.

1. The function yield maps non-terminal symbols to sets of vectors of strings. It is de-

fined as follows. Suppose that A ∈ N and that r = A(α)→ A1(α1) . . . Am(αm) ∈
P with m ≥ 0 and that ~ρ1 ∈ yield(A1), . . . ~ρm ∈ yield(Am).1 Let ~α be the argument

vector of the LHS of r. Then ~ρ ∈ yield(A) where ~ρ is obtained from ~α by replacing

each variable X with ~ρi(j) such that X is the jth argument in αi. Nothing else is

in yield(A).

2. The string language of G is L(G) = {w|〈w〉 ∈ yield(S)}.

For extracting LCFRSs from discontinuous treebanks, the notion of an LCFRS

derivation tree as introduced in Kallmeyer (2010, Chapter 6) is central. An LCFRS

derivation tree describes the derivation of a word from the start symbol of the gram-

mar, much like a classical phrase-structure tree (a CFG derivation tree) describes the

derivation of a word using a context-free grammar. LCFRS are conventionally drawn

so that the visual order of the leaves corresponds to the order of terminals in the word,

but unlike CFG derivation trees, they are not ordered, which leads to the possibility

of crossing branches. In order to unambiguously identify occurrences of terminals in

the word, the leaves of an LCFRS derivation tree are thus labeled with ranges corre-

sponding to the positions of terminals and empty elements in the word. The internal

nodes are labeled with non-terminals. Each local tree (an internal node together with

its children) corresponds to the application of a rule where the parent is labeled with the

LHS non-terminal and the children consist of a) internal nodes labeled with the RHS

1Boldface Greek letters represent sequences of arguments.
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S

A

A

〈0, 1〉 〈1, 2〉 〈2, 3〉 〈3, 4〉 〈4, 5〉 〈5, 6〉

Figure 2.2.: Derivation tree for the word ababab in the grammar from Figure 2.1

non-terminals and b) leaves corresponding to terminals and empty arguments occurring

on the LHS. An example derivation tree is given in Figure 2.2.

To define derivation trees precisely, we first need to define the notions of ranges,

range concatenations and rule instances, adapted from Range Concatenation Grammars

(Boullier, 1998). I assume the definition of trees as triples 〈V,E, r〉 where 〈V,E〉 is a

directed graph and r is the root of the tree, as given e.g. in Kallmeyer (2010, Chapter 1).

Definition 2.5 (Range): Let G = 〈N, T, V, P, S〉 be an LCFRS and w a word with

w = w1 . . . wn where wi ∈ T for 1 ≤ i ≤ n. A range in w is a pair 〈l, r〉 with 0 ≤ l ≤
r ≤ n. Its yield 〈l, r〉(w) is the substring wl+1 . . . wr. Two ranges 〈l1, r1〉 and 〈l2, r2〉 are

non-overlapping iff r1 ≤ l2 ∨ r2 ≤ l1.

Definition 2.6 (Range concatenation): In LATEX, everything is a hack.

1. The concatenation of two ranges 〈l1, r1〉 and 〈l2, r2〉 is defined as 〈l1, r2〉 iff r1 = l2,

otherwise it is undefined.

2. The concatenation of a string of ranges 〈l, r〉α where α is a possibly empty string

of ranges is defined as 〈l, r〉 if α is empty, and as 〈l, r〉 concatenated with the

concatenation of α otherwise.

Definition 2.7 (Rule instance): Let G = 〈N, T, V, P, S〉 be an LCFRS, w ∈ T ∗ and

r = A(α)→ A1(α1) . . . Am(αm) ∈ P . Then r′ is an instance of r with respect to w if it

is obtained from r by

1. replacing every occurring variable with a range in w, on both sides,

2. replacing every occurrence of a terminal t on the LHS with a range 〈l, l + 1〉 such

that 〈l, l + 1〉(w) = t,
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3. replacing every empty LHS argument with a range 〈i, i〉 in w and

4. replacing every LHS argument with its concatenation

such that the resulting ranges on the LHS are pairwise non-overlapping.

Definition 2.8 (Derivation tree): Let G = 〈N, T, VG, P, S〉 be an LCFRS and w =

a1 . . . an with ai ∈ T, 1 ≤ i ≤ n.

1. Let D = 〈V,E, r〉 be a tree such that there are n pairwise different leaves u1, . . . un

in D with l(ui) = 〈i−1, i〉 (1 ≤ i ≤ n) and every other leaf is labeled 〈i, i〉 for some

i with 0 ≤ i ≤ n.

2. The function n-yield , assigning vectors of ranges to nodes in the tree, is defined as

follows:

a) For every leaf u ∈ V , n-yield(u) = {l(u)}.

b) For every internal node v0 ∈ V , for every order v1, . . . vk of the pairwise different

daughters of v0 that are internal nodes such that l(vi) = Ai for 0 ≤ i ≤ k, for

every rule r = A0(α0) → A1(α1) . . . Ak(αk), for every instance A0(~ρ0) →
A1(~ρ1) . . . Ak(~ρk) of r wrt. w, ρ0 ∈ n-yield(v0) if

i. ~ρi ∈ n-yield(vi), 1 ≤ i ≤ k,

ii. for every terminal t occurring in α0, v0 has a child u where u is a leaf and

l(u) is the range with which t was replaced to obtain ~ρ0 in instantiating r,

iii. for all 1 ≤ i ≤ dim(A0) such that the ith argument in α is empty, v0 has

a child u where u is a leaf and l(u) = ~ρ0(i) and

iv. v0 has no other children which are leaves.

Nothing else is in n-yield(v0).

3. D is a derivation tree of w in G iff l(r) = S ∧ 〈〈0, n〉〉 ∈ n-yield(r).
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2.2. PLCFRS extraction from treebanks

Maier and Søgaard (2008) present a technique for extracting LCFRSs from treebanks

with crossing branches by interpreting the trees as derivation trees2 of the sentences in

a grammar that is not known. This grammar is then “recovered” from the trees. The

following presentation assumes that the treebank does not contain null elements.

First, we define the function rule to extract rules from internal nodes in treebank

trees as follows: For every tree t = 〈V,E, rt〉 in the treebank whose leaves are w1, . . . wn

(in the order of the sentence which t spans), use the variables X1, . . . Xn. For every

internal node v0 ∈ V whose children that are internal nodes are v1, . . . vm, conventionally

ordered by the leftmost dominated leaf, let r = A0(α0)→ A1(α1) . . . Am(αm) such that

for 0 ≤ i ≤ m,

• for every leaf wj dominated by vi, αi contains the variable Xj such that Xj precedes

Xk in αi if j < k,

• αi contains no other components,

• Xj is the last component of an argument in αi iff Xj occurs in αi and vi does not

dominate wj+1, i.e. an argument boundary is introduced at each discontinuity,

• there are no empty arguments in αi and

• Ai = l(vi)f where f is the number of arguments in αi, i.e. the symbols are equipped

with an index indicating the number of spans in the yield of the corresponding node.

This ensures that each non-terminal in the grammar will have a fixed fan-out.

Then rule(v0) := r′ where r′ is obtained from r by

1. replacing each Xi in α0 by the terminal l(wi) if wi is a child of v0 and

2. replacing each span of variables Xi . . . Xj that occurs as a RHS argument by a new

variable on both sides. This ensures that each RHS argument consists of exactly

one variable. The new variables are chosen according to some canonical naming

scheme which, together with the ordering convention mentioned above, guarantees

that rule is a function and that equivalent rules extracted from different nodes are

equal.

2Almost; the leaves of treebank trees are assumed to be labeled with terminals rather than ranges.
The information about the ranges of leaves is still present because each leaf is assigned to a specific
token in the sentence.
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do
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Figure 2.3.: A discontinuous tree

S1(X) → SBARQ1(X)

SBARQ1(XY ) → SQ1(X).1(Y )

SQ1(XY ZU) → VP2(XU)MD1(Y )NP1(Z)

VP2(X, Y ) → WHNP1(X)VB1(Y )

WHNP1(X) → WP1(X)

NP1(X) → PRP1(X)

Figure 2.4.: Rules extracted from the tree in Figure 2.3
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One new non-terminal S1 is introduced as the start symbol since trees in a treebank

may have differently labeled roots and all sentences in the treebank should be words in

the language described by the extracted grammar. Then the grammar to extract from

the treebank is the LCFRS 〈M ∪ {S1}, T, V, P, S1〉 where

• T is the set of all leaf labels in the treebank,

• P = {rule(v)|v is an internal node in the treebank}∪{S1(X)→ A1(X)|v is a root

in the treebank, A = l(v)},

• V is the set of variables occurring in the rules in P and

• M = {A| some A(α)→ Φ ∈ P}.

As an example, consider the treebank consisting of the single discontinuous tree given

in Figure 2.3 and the set of rules extracted from it, given in (Figure 2.4).

For r ∈ P , count(r) is defined as the number of nodes v in the treebank for which

rule(v) = r. Based on the function count, a standard estimation procedure such as

maximum likelihood estimation can be used to calculate probabilities of RHSs given a

specific LHS non-terminal and obtain a probabilistic LCFRS (PLCFRS):

Definition 2.9 (Probabilistic LCFRS): A probabilistic LCFRS (PLCFRS) is a tuple

〈N, T, V, P, S, p〉 such that 〈N, T, V, P, S〉 is an LCFRS and p : P → [0, 1] such that for

all A ∈ N ,
∑

A(α)→Φ∈P
p(A(α)→ Φ) = 1.

2.3. PLCFRS parsing

PLCFRSs produced by the above extraction procedure have a number of special prop-

erties:

• They are ordered (Villemonte de la Clergerie, 2002), i.e. within each RHS element,

the variables occur in the same order in which these variables occur on the LHS.

• They are ε-free (Boullier, 1998), i.e. no LHS argument is empty.

• Assuming that in the treebank, every word is represented as a leaf with no siblings

whose parent node is labeled with the part-of-speech tag of the word, terminals

occur only in terminating rules of the form A1(t) → ε where t is a word and A is

its part-of-speech tag. The LHS arguments of all other rules contain only variables.
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Scan: 0 : [A, 〈〈i, i+ 1〉〉] A is the part-of-speech tag of wi+1

Unary:
in : [B, ~ρ]

in + log(p) : [A, ~ρ]
p : A(~ρ)→ B(~ρ) ∈ P

Binary:
inB : [B, ~ρB], inC : [C, ~ρC ]

inB + inC + log(p) : [A, ~ρA]
p : A( ~ρA)→ B( ~ρB)C( ~ρC) an instance
of a rule in the grammar wrt. w

Goal items are of the form m : [S, 〈〈0, |w|〉〉].

Figure 2.5.: Weighted CYK deduction system for parsing w with a PLCFRS 〈N, T, V, P,
S, p〉

• In rules of rank 1, the LHS non-terminal and the RHS non-terminal have the same

number of arguments.

Maier and Kallmeyer (2010) define and implement a CYK parsing algorithm for

PLCFRS which relies upon all of these special properties for simplicity and efficiency.

Additionally, the definition of the parsing algorithm assumes that the grammar is binary,

i.e. has at most rank 2. Every LCFRS can be binarized; algorithms for doing so are

discussed in Section 4.1. Finally, it is assumed that every terminal in the parser input

has already been assigned a part-of-speech tag.

For a PLCFRS 〈N, T, V, P, S, p〉 and an input w, intermediate parsing results are

represented as weighted items of the form m : [A, ~ρ] where

• A ∈ N ,

• ~ρ is a vector of ranges (range vector) in w with |~ρ| = dim(A) and

• m is a real number called the weight of the item, more specifically a logarithmically

encoded probability, used to determine the relative probability of different parses

according to the PLCFRS.

The meaning of an item m : [A, ~ρ] is that ~ρ(w) ∈ yield(A) (with associated weight m).

The set of items that exist for the given grammar and the given input can be specified

via the CYK-style deduction system (set of deduction rules) given in Figure 2.5. A

deduction rule specifies that if all of the antecedent items (above the bar) are derivable

and the side condition (right of the bar) holds, then the consequent item (below the bar)
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add Scan results to A;
while A 6= ∅ do

remove best item x : I from A;
add x : I to C;
if I goal item then

stop and output true;
end
else

forall the y : I ′ deduced from x : I and items in C do
if there is no z with z : I ′ ∈ C ∪ A then

add y : I ′ to A;
end
else

if z : I ′ ∈ A for some z then
update weight of I ′ in A to max(y, z)

end

end

end

end

end

Algorithm 2.1: Weighted deductive parsing

is also derivable. The idea of the deduction system is that when for a given rule range

vectors for all of the RHS elements have been found, then this gives us a range vector

for the LHS. The Scan rule starts by finding items for the terminating rules, then the

rules Unary and Binary find ranges for rules of rank 1 and 2, respectively, based on

existing items. w is in the language of the PLCFRS iff a goal item can be derived using

the deduction system.

While the deduction system defines the search space of all possible items for the given

grammar and input, an efficient search strategy is needed to quickly find the “best” goal

item – i.e. the one with the highest weight – in order to find the most probable parse.

The search strategy used, an instance of weighted deductive parsing (Nederhof, 2003), is

given as Algorithm 2.1. It uses two structures to store derived items, an agenda A and

a chart C. A newly derived item is first stored on the agenda until it has been combined

with all items already on the chart to derive new items, then it is also moved to the

chart. This ensures that all possible combinations of items are tried exactly once. By
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always retrieving the best item on the agenda first, the algorithm ensures that the first

goal item found will be the best goal item.

Every time an item is derived, the actual implementation of the algorithm also stores

backpointers to the items it was derived from. When the weight of an item on the

agenda is updated, i.e. a more probable way to derive the same item has been found,

the backpointers are also updated. Using the backpointers, the best derivation tree for

w can be constructed from the items on the chart after finding the best goal item.



Chapter 3.

Transforming Penn Treebank trees into

a discontinuous format

The phrase structure trees in the Penn Treebank are context-free. They contain addi-

tional information about a number of types of non-local dependencies. This information

is represented using null elements and coindexation. Context-free parsers cannot make

adequate use of coindexation, and many parsers are limited in their ability to handle null

elements. Before training a probabilistic parser, indices and null elements are therefore

usually removed, losing the information about non-local dependencies completely.

This chapter presents a method for transforming the trees in such a way that cer-

tain types of non-local dependencies are encoded as part of the tree structure. This

is possible when discontinuous constituents are allowed. When a probabilistic parser

that is able to deal with discontinuous constituents is then trained on the transformed

trees, as presented in the previous chapter, it will also learn information about non-local

dependencies.

The general considerations which have guided the development of the transformation

method are explained in Section 3.1. Section 3.2 presents the basic transformation

algorithm. Section 3.3 presents the different types of non-local dependency annotation

in the WSJ treebank that the algorithm can be applied to. It also motivates some

enhancements to the algorithm which are then summarized in Section 3.4. Section 3.5

discusses those types of non-local dependency annotation which are not included in the

transformed treebank. Section 3.6 gives a statistical account of characteristics of the

transformed treebank, e.g. frequency of discontinuity and of certain configurations.

29
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Figure 3.1.: Examples of dependents in their interpretation locations

3.1. Guiding principles

There may be many sensible ways to incorporate non-local dependency information into

(discontinuous) phrase structure trees. The method presented here was inspired by the

treebank annotation scheme laid out in Skut et al. (1997) as well as its implementa-

tions in the German treebanks NEGRA (Skut et al., 1998) and TIGER (Brants et al.,

2002), particularly by the principle to aim for a “uniform representation of local and

non-local dependencies” (Skut et al., 1997). The local and non-local dependencies it

is concerned with are primarily those dependencies that make up argument structure,

meaning dependencies between verb, noun, adjective, adverb and preposition heads and

their arguments/adjuncts such as subjects, objects, or modifiers. In the following, I use

the term dependent to mean argument or adjunct, not to be confused with the more

general use of the term in Dependency Grammar.

Bies et al. (1995, Section 1.1) give specific rules governing where and how dependents

are attached in the Penn Treebank with respect to their heads. For example, subjects

are attached at the clause level S node while most other dependents of the predicate

are attached to the same VP node as the predicate. This can be seen in Figure 3.1(a).

To give another example, the attachment site for PP dependents of nouns is within

an extra NP into which the NP containing the noun is embedded (this is known as

Chomsky-adjunction, see Figure 3.1(b)). I will call the attachment site of a dependent
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according to these rules its interpretation location because from the perspective of an

application processing phrase structure trees, it identifies the head with respect to which

the dependent is to be interpreted.

Where word-order-related phenomena like wh-movement, topicalization or extrapo-

sition occur, it is often impossible to attach a dependent at its interpretation location

in a context-free tree because this would create discontinuous constituents. It is instead

attached at another location in the tree that preserves both word order and context-

freeness. Such cases constitute exceptions to the attachment rules described above and

are typical examples of non-local dependencies. The basic idea behind the method pre-

sented here is to eliminate these exceptions by allowing discontinuous constituents and

reattaching the dependents to their interpretation locations.

The method presented is designed to be simple and automatic. It consists in a

tree transformation algorithm that uses only non-local dependency annotation already

present in the Penn Treebank, in the form of null elements and coindexation. No manual

reannotation has been performed, except for correcting some annotation errors and

inconsistencies before carrying out the transformation. The corrections are listed in

Appendix A.

3.2. The basic algorithm

The format used for annotating non-local dependencies in the Penn Treebank is exem-

plified in the first tree in Figure 3.2. The general case is that some dependent c (in this

case WHNP) is not in its interpretation location (in this case the interpretation location

is in the VP because what is the object of the verb do); word order makes it impossi-

ble to attach it there in a context-free tree because other words (should, I ) intervene.

Instead, c is attached in a phrase higher up in the tree, and a placeholder node p (NP)

is attached at the interpretation location. p has one child, a null element (*T*) that

is coindexed with c, i.e. the null element and c bear the same numerical index in their

labels. Coindexations represent directed secondary edges from the null element to the

coindexed internal node, and as such they are shown in the diagrams.

To incorporate the information about non-local dependencies into the tree structure,

the tree transformation algorithm given as Algorithm 3.1 can be used. It replaces *T*,

*ICH* and *EXP* null elements and their placeholder parent nodes with the coindexed
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Figure 3.2.: A wh-question and its transformed version

constituents, removing these from their previous attachment sites. (This choice of null

element types to process is justified and extended in the following sections.) All other

null elements are also removed, as well as resulting empty constituents and remaining

indices on node labels, as is common practice for preprocessing the Penn Treebank for

training a parser.

foreach sentence s do
foreach node c in s coindexed with a *T*, *ICH* or *EXP* null element n do

select the grandparent of n as the destination node d;
remove c from its current parent and reattach it to d;

end

end
delete all null elements;
delete non-terminal nodes without children until none exist;
remove all remaining indices from node labels;

Algorithm 3.1: The basic transformation algorithm

The result of the algorithm for the example is given as the second tree in Figure 3.2.

The WHNP is now in its interpretation location within the VP. Note that the VP has

become a discontinuous constituent, i.e. it covers non-adjacent spans of terminals.

Note also that the original attachment of the WHNP at a higher node than its inter-

pretation location is not directly motivated by the intervening material, but rather by

the theoretical generalization that in wh-questions, movement of wh-phrases to the front

of the sentence always takes place. The original annotation reflects this generalization
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Figure 3.3.: A sentence where the transformation does not create a discontinuous constituent

even when there is no intervening material, as can be seen in Figure 3.3. In such cases,

the application of the algorithm simplifies the tree but does not create a discontinuous

constituent.

3.3. Types of non-local dependencies included in the

transformed treebank

This section looks in detail at the types of grammatical phenomena that are annotated

using *T*, *ICH* and *EXP* null elements in the WSJ treebank. It justifies why it

makes sense to apply the algorithm to them and discusses two problematic cases which

motivate an extension of the algorithm.

3.3.1. wh-questions, relative clauses and tough movement

wh-questions and relative clauses are similar in English: both start with what I will call a

wh-element that is to be interpreted as a dependent of some phrase within the sentence,

i.e. which can be seen has having moved out of its interpretation location. A wh-element

can be an interrogative word or a relative pronoun or a phrase containing one. In the

WSJ treebank, a wh-element is represented as a phrase of category WHNP, WHADVP,

WHPP or WHADJP that is adjoined to the clause-level node using an SBARQ resp.

SBAR parent node.
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This location can be seen as reflecting only word order. There is no head with

respect to which the SBAR/SBARQ phrase would provide an interpretation location –

rather, the wh-element is still dependent on the inner predicate, not only as a semantic

argument, but also morphosyntactically. This is shown by the fact that the pronoun

who can take the form whom if it fills an object slot of the inner predicate. In fact, the

interpretation location of the wh-element with respect to the inner predicate is marked

by a corresponding placeholder phrase containing a null element of type *T*, as already

seen in the example given in the previous section. Thus, it makes sense to apply the

algorithm, remove the wh-element from the SBAR/SBARQ phrase and attach it at the

interpretation location instead. Examples for wh-questions have already been given in

Figure 3.2 and Figure 3.3; a relative clause and the result of the transformation can be

seen in Figure 3.4.

In infinitival (Figure 3.5) and some object relative (Figure 3.6) clauses, there is no

overt wh-element, but the annotation assumes a null complementizer, represented by a

null element of type 0 embedded in a WHNP. This WHNP is coindexed with a *T* null

element in the relative clause. The same is true for the tough movement construction

(Figure 3.7). The algorithm applies to such cases as well, reattaching the empty WHNP

to the VP, replacing the empty NP. However, this has no effect in the end since all

remaining empty elements are deleted. In the transformed trees, no trace of the null

complementizers remains.

3.3.2. Fronted and circumpositioned dependents

In the WSJ treebank, fronted dependents are attached directly to the clause-level phrase

and not to an additional SBAR/SBARQ phrase. However, just like wh-elements, their

interpretation location (usually in the VP) is marked using a coindexed *T* null element,

provided that the fronted dependent is an argument. The annotation guidelines are not

completely clear on what notion of “argument” is meant (cf. Bies et al., 1995, p. 65 ff.),

but inspection of the treebank suggests it is the notion of “complement” used ibid.,

section 1.1.4. This includes NP objects, clauses, quotations, the passive logical-subject

by-phrase, VPs and constituents with the function tag -BNF, -CLR, -DTV, -PRD or

-PUT (cf. Bies et al., 1995, Section 2.2). An example of a fronted argument, along with

the result of the transformation, is given in Figure 3.8.

Other fronted dependents (“adjuncts”, ibid., p. 67) like the ADVP in Figure 3.9 are

treated differently in that their interpretation locations (in the VP) are normally not
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Figure 3.14.: A modifier to the subject appearing after the verb, causing a discontinuous NP

marked, thus the transformation does not apply to them. Not marked and thus not

considered in the transformation either are fronted arguments in whose interpretation

location a resumptive pronoun appears (left dislocation), as in Figure 3.10.

Quotations are treated as arguments of the verb of saying (ibid., p. 31), whether

enclosed in quotation marks or not. They are often fronted, in which case the algo-

rithm applies in the usual way (Figure 3.11), or circumpositioned, with one portion

of the quotation appearing before and one after the verb (Figure 3.12). Like fronting,

circumpositioning also occurs with arguments other than quotations, albeit rarely (Fig-

ure 3.13). The circumpositioned argument, usually a sentence, is grouped under one root

node, and the interruptive material which contains the matrix VP is embedded into it

using a PRN (parenthetical) node. The interpretation location of the circumpositioned

argument within the matrix VP is marked with a coindexed *T* null element as usual.

Applying the basic algorithm in such cases would destroy the tree structure: the

PRN node dominates the matrix VP node and is itself dominated by the root of the

circumpositioned constituent; introducing an edge from the VP node to the root would

create a cycle. Since a PRN node does not have a specific interpretation location, one

solution is to remove the parenthetical from within the circumpositioned constituent

and attach it as a sibling of the circumpositioned constituent instead (if the root of the

circumpositioned constituent is not the root of the whole tree) before carrying out the

usual reattachment, which attaches the root of the circumpositioned constituent within

the PRN constituent – turning the tree structure inside out, so to speak. The results

for the examples are shown on the right sides of Figures 3.12 and 3.13. The precise

enhanced algorithm is given below in Section 3.4, together with one more refinement.
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Figure 3.15.: Subject-verb inversion causing a discontinuous VP

3.3.3. Discontinuous dependency

The *ICH* null element type is very similar to *T*: it marks the interpretation location

of constituents that are not attached there. While *T* is mainly used for clause-initial

and circumpositioned constituents, *ICH* is used almost exclusively for constituents

that appear to the right of their interpretation location. Typical uses include modifiers

such as the PP in Figure 3.14 which are to be interpreted as modifiers to a distant

noun rather than at their attachment site in the context-free tree, and cases of subject-

verb inversion as in Figure 3.15 where the subject appears between the verb and some

of its non-subject dependents, making it impossible to construct a continuous VP fol-

lowing the usual attachment rules. In short, *ICH* is used “to indicate a relationship

of constituency between elements separated by intervening material” (Bies et al., 1995,

p. 107), and applying the transformation algorithm realizes this relationship by grouping

the separated elements under the same node.

3.3.4. it-extraposition

Clausal arguments can be extraposed in English while leaving an expletive it in the

interpretation location. In the case of clausal subjects, this is annotated in the Penn

Treebank by Chomksy-adjoining to the expletive it an *EXP* null element which is

coindexed with the extraposed subject, as in Figure 3.16. Applying the algorithm to

this configuration creates a constituent that groups the expletive it and the extraposed

subject together. Even though this constituent may seem somewhat artificial, it has the

advantage of removing the extraposed subject from a location where it is attached only

for reasons of word order and attaching it to its interpretation location, if indirectly
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Figure 3.17.: Right node raising

via an additional NP node. It is also consistent with the way the German treebanks

NEGRA and TIGER treat the analogous expletive es.

3.3.5. Dealing with shared dependents

As the examples discussed so far show, discontinuous constituents make it possible to

attach dependents in a more consistent way than with a system of coindexing on top

of context-free trees. What discontinuous constituents do not offer, unfortunately, is

a natural way to represent situations in which a dependent is shared between more

than one head and thus has two or more interpretation locations. This is the case in

coordination when a non-subject dependent must be interpreted in both coordinated

elements, but is realized only once.
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Figure 3.18.: Transformed version of the tree in Figure 3.17, attaching the shared dependent
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When this dependent appears at the right periphery of the coordination, the Penn

Treebank annotation attaches it at the coordination level, and placeholder constituents

with *RNR* (right node raising) null elements mark the interpretation locations, as

shown in Figure 3.17. When the shared dependent is wh-moved or fronted, it attaches

at the usual non-interpretation-location, and *T* rather than *RNR* null elements are

used to mark the interpretation locations, as shown in Figure 3.20. In the rare cases

where the shared dependent is neither wh-moved nor fronted nor right-node raised, it is

attached in that coordinated constituent where it is realized, and no explicit annotation

marks its relation to the other coordinated constituent. The NP last week in Figure 3.23

may be seen as such a case.

In a tree, every node can have only one parent, so it is not possible to attach the

shared dependent at all of its plausible interpretation locations. In the case of right

node raising constructions, it is the rightmost interpretation location that suggests itself,

for two reasons: first, the phonological surface form of right-node-raising constructions

indeed allows to hear the rightmost coordinated constituent as containing the shared

dependent. Attaching it there thus reflects a linguistically plausible analysis where

the shared dependent is realized in the last coordinated constituent and elided in the

others. Where the shared dependent is wh-moved or fronted, it can analogously be

attached at the interpretation location in the leftmost coordinated constituent, treating

it as elided in the other coordinated constituents. This strategy amounts to always

attaching a shared dependent at the closest interpretation location, and this strategy

has been chosen for the transformation. The resulting trees are shown in Figure 3.18
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and Figure 3.21, respectively. In cases like that of Figure 3.23, no transformation is

required to be consistent with this strategy, as shared dependents are already attached

within the coordinated constituent where they are realized.

A possible alternative strategy would be to always attach shared dependents at coor-

dination level. This would require no action in the case of right node raising (except for

removing the *RNR* null elements), see e.g. Figure 3.19. In the case of wh-moved and

fronted elements, it would be undesirable to leave the shared and moved dependent in its

“artificial” SBAR location since this would be inconsistent with the new annotation of

non-shared dependents, where the algorithm abolishes attachment of moved dependents

to SBAR altogether. A “coordination level” attachment site for the shared dependent

can be found by choosing the lowest common ancestor of all interpretation locations.

The result of such a reattachment is shown in Figure 3.22. However, this alternative

strategy was not explored further.

3.4. The enhanced algorithm

The transformation algorithm with the enhancements for dealing with parentheticals

(Section 3.3.2) and shared dependents (Section 3.3.5) is given as algorithm 3.2. The

body of the main loop consists of three blocks: selecting a destination location d for

the constituent c that is to be moved, preventing cycles by detaching or reattaching

parenthesis (PRN) nodes, and actually reattaching c to its destination d.

3.5. Types of non-local dependencies which are not

included

The types of non-local dependencies considered so far, annotated using the null elements

*T*, *ICH*, *EXP* and *RNR*, can all be interpreted as a dependent appearing in

a position removed from its interpretation location. Through allowing discontinuous

constituents and reattaching these dependents, it has been more or less unproblematic

to incorporate these dependencies into the tree structure. There are other types of non-

local dependencies annotated in the Penn Treebank where this recipe is not applicable,

and which are therefore not included in the transformed treebank. This section briefly



46 Transforming Penn Treebank trees into a discontinuous format

foreach sentence s do
foreach node c in s coindexed with *T*, *ICH*, *EXP* or *RNR* null
elements n1, . . . , nk do

d← grandparent of that null element among n1, . . . , nk which is closest to
c;
if c properly dominates d then

find the node labeled PRN on the path between c and d, call it r (if not
present, abort and continue with next c);
remove r from its current parent;
if c is not the root of s then

reattach r to the parent of c;
end

end
remove c from its current parent and reattach it to d;

end

end
delete all null elements;
delete non-terminal nodes without children until none exist;
remove all remaining indices from node labels;

Algorithm 3.2: The enhanced transformation algorithm

presents the remaining types of null elements used in the Penn Treebank annotation,

and explains why they are discarded in the transformation.

3.5.1. PRO and passive trace

In subordinate clauses without an overt subject, the Penn Treebank annotation marks

the empty subject position with a placeholder NP containing a * null element, cor-

responding to the phonologically empty PRO subject postulated in Government and

Binding theory. It is often coindexed with another NP in the same sentence. The coin-

dexation may express the control relation in subject control, object control and raising

constructions, but it is used more generally to connect the * element to an NP “when-

ever there is an appropriate referent elsewhere in the same sentence” (Bies et al., 1995,

p. 97).

These referents could be reattached to replace the * subject in the subordinate clause,

reflecting the fact that they fill a semantic role of the subordinate verb. But unlike
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Figure 3.24.: Constructions where a “raised” dependent fills a semantic role of both the
matrix verb and the subordinate verb

constituents coindexed with *T* null elements, these referents generally depend syntac-

tically on a matrix verb. This can be tested using pronoun case: They persuaded him to

leave is grammatical while *They persuaded he to leave is not – the pronoun is assigned

case by the object position of the matrix verb expect rather than the subject position

of the subordinate verb leave. This syntactic dependency is a strong argument against

reattaching referents of * null elements, independently of whether the referent addition-

ally fills a semantic role of the matrix verb, as in the examples in Figure 3.24, or not,

as in raising constructions (Figure 3.25(a)). The same is true for the surface subject in

passive constructions as in Figure 3.25(b), which is co-indexed with a * null element in

the position within the subordinate VP, marking the position where the surface subject

would be realized as the object in a corresponding active clause.

3.5.2. Permanent predictable ambiguity

*PPA* null elements are used to indicate attachment ambiguities (permanent predictable

ambiguity) that annotators could not resolve using context. As Bies et al. (1995, p. 102)

write, the default is “to attach the constituent at the more likely site (or if that is

impossible to determine, at the higher site) and then to pseudo-attach it at all other

plausible sites.” An example is given in Figure 3.26, where it is unclear if the from-

phrase modifies finagled or loan. As in the case of shared dependents (Section 3.3.5), it

is impossible to attach the constituent at more than one location in a tree, even though
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Figure 3.25.: Constructions where a “raised” dependent fills a semantic role only of the
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Figure 3.27.: Ellipsis

it would make sense at more than one. However, in this case, a default attachment

choice is already made by the annotators. The algorithm sticks with this choice and

discards *PPA* elements.

3.5.3. Ellipses

The location of elided phrases is marked with a placeholder phrase containing a *?* null

element (cf. Bies et al., 1995, p. 81). A phrase understood in such a location is not

always identical to another phrase in the same sentence, and even if it is, as is the case

with the lower VPs in Figure 3.27, it would be unwise to reattach that phrase at the

location of the ellipsis because it must also be interpreted where it is realized. *?* null

elements are therefore discarded.

3.5.4. Null elements not indicating non-local dependencies

The remaining three types of null elements that are used in the Penn Treebank are not

used to indicate dependencies, thus they are just removed by the algorithm:

0 represents the null complementizer (cf. Section 3.3.1).

*U* serves as the head noun of NPs denoting monetary amounts or percentages, as

in (NP $ 27 *U*) or (NP (QP between $ 5 and $ 15) *U*), as a placeholder for the

unit symbol which is not in the normal location for a head noun. In cases like the latter

example, discontinuous constituents would allow to attach the dollar symbols directly
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trees with gap-degree

type instances trees 0 1 2

*T* 18759 15452 7292 7924 236

*T*-PRN 843 843 0 71 772

*ICH* 1268 1240 7 1200 33

*EXP* 658 651 1 630 20

*RNR* 210 208 131 67 10

any reattachment 21738 17187 7397 8996 794

no reattachment n/a 32021 32021 0 0

total n/a 49208 39418 8996 794

Table 3.1.: Reattachment types and gap-degrees of resulting trees

within the NP instead of the *U*. However, it seems unlikely that this would offer an

advantage to parsing or to semantic interpretation.

The “anti-placeholder” *NOT* is a very rare element used only in template gapping

(Bies et al., 1995, Section 7.4.6). It appears in a coordinated element and is coindexed

with a constituent within another coordinated element, indicating that the latter should

not be interpreted in the former, thus forbidding the introduction of an edge through

reattachment.

3.6. Characteristics of the transformed treebank

Having transformed the WSJ treebank to a discontinuous format (let us call the result

WSJ-D with a D for “discontinuous”), questions arise about the frequency of individ-

ual types of non-local dependencies as well as about the degree of discontinuity in the

transformed trees. The latter is important for parsing complexity. As a measure for the

discontinuity of trees, Maier and Lichte (2009) define the gap-degree of a node in a tree

as the number of gaps in the yield of the node. For example, in the transformed tree in

Figure 3.14, the higher NP node dominates five terminal nodes in two contiguous spans.
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gap-degree ill-degree

treebank trees 0 1 2 3 0 1 2

NEGRA 20597 72.44% 24.23% 3.30% 0.04% 98.75% 1.25% 0.000%

TIGER 40013 71.01% 25.77% 3.18% 0.04% 98.90% 1.10% 0.000%

WSJ-D 49208 80.10% 18.28% 1.61% 0.00% 99.75% 0.25% 0.002%

Table 3.2.: Comparison of the characteristics of the transformed WSJ treebank with the data
of Maier and Lichte (2009) for two discontinuous German treebanks

That is, the sequence of dominated terminal nodes is interrupted by one gap, containing

the words fell and marginally which are not dominated by the NP node. Therefore, the

gap-degree of this node is 1. The gap-degree of all other nodes in this tree is 0, including

the top S node – the terminal nodes it dominates are all contiguous. The gap-degree of

a tree is defined as the maximum of the gap-degrees of all of its nodes.

The upper part of Table 3.1 gives an overview of the reattachment operations made

in the transformation, broken down by the type of the null element involved (*T*,

*ICH*, *EXP* or *RNR*). Reattachments of discontinuous sentential arguments that

necessitated reattaching a PRN node as described in Section 3.3.2 are listed separately as

*T*-PRN. The second column shows the total number of times each type of reattachment

was made, summing to a total of 21378 operations. One type of reattachment may occur

more than once in the same tree, so the third column contains the size of the set of trees

affected by one or more instances of each reattachment type. The last three columns

show the distribution of gap-degrees within each such set of trees.

More than one type of reattachment may occur in the same tree, so the gap-degrees

in each row cannot directly be attributed to the corresponding types of reattachment.

However, the figures can give a rough idea of each type’s tendency to introduce gaps.

*T*, with the vast majority of instances, results in discontinuous trees (i.e. trees with

gap-degree > 0) in only about half of the cases, plausibly explained by the fact that

wh-movement is frequently from the subject position, as shown in Figure 3.3. By con-

trast, *ICH* and *EXP* null elements are almost only used when in fact necessitated by

intervening material, resulting in very few trees that remain context-free in the transfor-

mation. The opposite is true for *RNR* elements: the strategy to attach “right-node-
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raised” elements at their rightmost interpretation location (cf. Section 3.3.5) precludes

the introduction of additional discontinuity except in a few cases where punctuation

intervenes between the rightmost interpretation location and the right-node raised ele-

ment. Finally, the category *T*-PRN is very prone to discontinuity – unsurprisingly,

as in these cases the yield of a parenthetical is removed from the yield of a discontin-

uous sentential argument, leading to a gap-degree of at least 1 in the root node of the

sentential argument. Additionally, punctuation surrounding the parenthetical is often

attached at the PRN node and thus not dominated by the parenthetical S node, which

then even has 2 gaps.

Looking at the lower part of the table, one notes that roughly a third of all trees

have been affected by at least one reattachment while the rest of the treebank is un-

changed except for removed null elements and coindexation. Of the trees affected by

reattachment, about 60% have become discontinuous, that is roughly a fifth of all trees.

Most of these have gap-degree 1, only some have gap-degree 2, no higher gap-degrees

occur. Table 3.2 compare these figures to those found by Maier and Lichte (2009) for

the German treebanks NEGRA (Skut et al., 1998) and TIGER (Brants et al., 2002).

It also shows the number of ill-nested (cf. Maier and Lichte, 2009) trees in the three

treebanks.

The annotation schemes of NEGRA and TIGER are very similar; they do not use

coindexation or null elements and they allow for discontinuous constituents in order to

encode head-dependent relations consistently, similar to WSJ-D. There are relatively

more discontinuous trees in the two German treebanks than in WSJ-D. This seems to

confirm the intuition that German is “more discontinuous”, i.e. “more context-sensitive”

than English due to its freer word order. The difference in number would be even higher

if the WSJ(-D) treebank and NEGRA/TIGER used more similar annotation schemes:

NEGRA and TIGER attach an inflected verb and all of its dependents directly at the

clause level with no intervening VP node, thus avoiding discontinuity when a dependent

of the inflected verb is wh-moved or fronted. It can thus be said that annotating non-

local head-dependent relations in English using discontinuous constituents introduces

only a relatively limited degree of discontinuity into the trees.



Chapter 4.

Parameters for grammar annotation

and parsing

Extracting a “vanilla” probabilistic grammar from a treebank and using a parsing al-

gorithm to find the most probable parse according to this grammar is only the basic

technique in data-driven parsing and leaves much room for optimization in terms of

both accuracy and speed. In the case of PCFG, several techniques have emerged and

successfully been employed over the years. They may take the shape of modifications

to the extracted grammar (grammar annotation) or to the parsing algorithm. Some

of these techniques have already been adapted to PLCFRS parsing. In this chapter,

I describe the techniques of binarization (with Markovization), category splitting, and

briefly also outside estimates and cutoff. In the concluding section, I present a series of

parsing experiments applying the techniques to a subset of the data produced in Chap-

ter 3 in order to find a good combination of parameters for larger parsing experiments

on the full transformed WSJ treebank.

4.1. Binarization

The parsing algorithm described in Section 2.3 assumes that the grammar is (at most) of

rank 2, i.e. that the right-hand side of each rule has at most two elements. This allows

for efficient parsing with only passive items, which are simpler than active items and

therefore can be stored and retrieved more quickly. Gómez-Rodŕıguez et al. (2009) show

that it is possible to transform any LCFRS into a strongly equivalent LCFRS of rank

2 and give algorithms for doing so. The process is called binarizing the grammar and

53
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SBARQ

SQ

VP

WHNP NP

WP MD PRP VB .
What should I do ?

Figure 4.1.: Example of a non-binary tree

SBARQ(XY ) → SQ(X).(Y )

SQ(XY ZU) → VP(X,U)MD(Y )NP(Z)

VP(X, Y ) → WHNP(X)VB(Y )

WHNP(X) → WP(X)

NP(X) → PRP(X)

Figure 4.2.: Rules extracted from the tree in Figure 4.1

similar to the transformation of a context-free grammar into Chomsky Normal Form.

“Strongly equivalent” here means that the derivations of the original grammar for any

input w can be reconstructed from the derivations of the binarized grammar for w (the

parse trees can be debinarized), using some simple homomorphism. Note that it is not

generally possible to transform a k-LCFRS into an equivalent k-LCFRS of rank 2; the

fan-out may increase in binarization. This issue is revisited in Section 4.1.2.

The basic binarization algorithm used in Maier and Kallmeyer (2010) is here given

as Algorithm 4.1, extended to update the count function (cf. Section 2.2). It converts

the rules in the grammar with more than two RHS elements into a number of binary

rules. For each of these, the same count is recorded as for the original rule. The

algorithm proceeds by going through the RHS of the original rule, in each iteration

“splitting of” the leftmost RHS element and grouping the remaining RHS elements

under a RHS element with a new predicate. The arguments γ of the new RHS element

are the arguments α of the LHS where terminals and the variables occurring in the

arguments χ of the split-off element have been removed, and new argument boundaries

have been introduced such that non-adjacent variables in α are also non-adjacent in γ.

For example, if α = XY tZ, U and χ = Y, U , then γ = X,Z. Formally, this is defined

following Maier and Kallmeyer (2010) as the reduction of α with χ as follows:
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Definition 4.1 (Reduction): Let 〈N, T, V, P, S〉 be an LCFRS, α a sequence of argu-

ments α1, . . . αi ∈ (V ∪T )∗ and χ a sequence of variables x1, . . . xj ∈ V for some i, j ∈ N.

Let w = α1$ . . . $αi be the string obtained from concatenating the arguments in α, sep-

arated by a new symbol $ /∈ (V ∪T ). Let w′ be the image of w under a homomorphism h

defined as follows: h(a) = $ for all a ∈ T , h(X) = $ for all X ∈ {x1, . . . xj} and h(y) = y

in all other cases. Let γ = y1, . . . ym ∈ V + such that w′ ∈ $∗y1$+y2$+ . . . $+ym$∗. Then

γ is the reduction of α by χ.

Data: an LCFRS G = 〈N, T, V, P, S〉 with a count function count
Result: G and count updated to represent a binarized LCFRS with counts
foreach rule r = A(α)→ A1(α1) . . . Am(αm) ∈ P with m > 2 do

remove r from P ;
R := ∅;
pick new non-terminals C2, . . . , Cm−1;
add the rule A(α)→ A1(α1)C2(γ2) to R where γ2 is obtained by reducing α
with α1;
foreach i, 2 ≤ i ≤ m− 2 do

add the rule Ci(γi)→ Ai(αi)Ci+1(γi+1) to R where γi+1 is obtained by
reducing γi with αi;

end
add the rule Cm−1(γm−1)→ Am−1(αm−1)Am(αm) to R;
foreach rule r′ ∈ R do

replace RHS arguments of length > 1 with new variables (in both sides)
and add the result to P ;
set count(r′) := count(r);

end

end

Algorithm 4.1: Deterministic algorithm for binarizing an LCFRS with counts, adapted

from Maier and Kallmeyer (2010)

As an example, consider the grammar from Figure 2.4, repeated here as Figure 4.2

with fan-out indices and the top production from the “artificial” start symbol dropped

for simplicity. It has one rule with rank 3, which is binarized to two rules with rank 2.

The binarized grammar is shown in Figure 4.3.

4.1.1. Markovization

In the above binarization algorithm, each binary rule newly introduced while binarizing

an original rule gets its own unique LHS non-terminal. Each of these non-terminals
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SBARQ(XY ) → SQ(X).(Y )

SQ(XV U) → VP(X,U)C2(V )

C2(Y Z) → MD(Y )NP(Z)

VP(X, Y ) → WHNP(X)VB(Y )

WHNP(X) → WP(X)

NP(X) → PRP(X)

Figure 4.3.: The grammar from Figure 4.2, binarized

occurs on the RHS of only one rule and of the LHS of only one rule. This has the effect

that the rules stemming from the binarization remain “chained together” – they can only

be used together in a derivation, simulating the use of the original unbinarized rule. If

one of them is used, the rule to be used for expanding the newly introduced non-terminal

on the RHS is already determined because there is only one with that non-terminal on

the LHS. In this sense, the binarization is deterministic.

Alternatively, the LHS non-terminals of the newly introduced binary rules can be

chosen to be non-unique, thus allowing recombinations of binary rules in derivations.

One way to choose non-unique non-terminals is by horizontal and vertical context.

Definition 4.2 (Horizontal context): Given some h ≥ 0 and a rule r = A(α) →
A1(α1) . . . Am(αm), hc(r, i, h) with 1 ≤ i ≤ m is called the horizontal context of the

ith RHS element and defined as follows: if h = 0, then hc(r, i, h) = 〈〉. Otherwise,

hc(r, i, h) = 〈Ai, . . . Amax(i−h+1,1)〉.

Definition 4.3 (Vertical context): Given some v ≥ 1 and a node N in a treebank

where p is the shortest path from N to the root of the tree, the vertical context vc(N, v)

is defined as 〈l(p(1)), . . . l(p(max(v, |p|)))〉. If r = rule(N) (cf. Section 2.2), then r is

said to occur with vertical context vc(N, v).

For example, consider the tree in Figure 4.1 and the (unbinarized) grammar extracted

from it given in Figure 4.2. With v = 1, the vertical context of the SQ node is 〈SQ〉.
The second rule in the grammar – let us call it r – has been extracted from that node,

it is therefore said to occur with vertical context 〈SQ〉. With v = 2, the vertical context

would be 〈SQ, SBARQ〉. Then, with a larger treebank, the same rule could also appear
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in different vertical contexts. With h = 2, the horizontal context of the second RHS

element of r, MD(Y ), is hc(r, 2, 2) = 〈MD,VP〉.

The idea of binarization with Markovization is to not create a new LHS predicate

for each new binary rule but instead choose predicates C
~V
~H

where ~V is a vertical context

in which the rule to binarize occurs and ~H is the horizontal context of the RHS element

that is split off by the new binary rule. This way, the binary rules introduced can

be shared among different original unbinarized rules, as long as these have some RHS

subsequences of length h as well as some vertical contexts in which they occur in common.

Binarization then leads to horizontal Markovization of the grammar, a kind of factoring

which has successfully been used to address the problem of sparse data: with several

smaller rules, chances of finding a sufficient number of occurrences for reliably calculating

the probabilities increase. Also, factoring rules makes the number of possible rules finite,

making it possible in principle to apply standard smoothing techniques to further reduce

problems stemming from sparse data.

The downside of factoring is that it introduces new independence assumptions which

may be false. To prevent this from being detrimental, h should be chosen large enough.

Without binarization or with deterministic binarization, h is effectively ∞ since RHSs

are not factored at all. Similarly, choosing a large v counters the false independence

assumption that expansions of RHSs are independent from vertical context. In the

vanilla treebank model, v is 1 because the expansion of a rule is only conditioned on

its LHS non-terminal. In choosing the parameters, there is a trade-off between false

independence assumptions and the sparse data problem. Klein and Manning (2003b)

discuss these issues extensively and present a type of context-free treebank model which

uses horizontal and vertical context for the full grammar, not just for binarized rules as

in the present work.

The algorithm for binarization with Markovization is given as Algorithm 4.2. Since

we no longer choose a fresh LHS symbol for each new rule, the same rule (up to renamed

variables) may be added to the grammar more than once during binarization. The

algorithm takes care of this by adding the new count to the old count each time an

equivalent rule is added. Also, while traversing an original rule, we no longer add a rule

r to the set R, but rather a pair 〈r, i〉 where i is a unique index. This way, if the same

rule is created twice while binarizing one rule, it is also counted twice. To accommodate

vertical context, each original rule is now processed not only once, but once for each

distinct vertical context it occurs with.
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Data: an LCFRS G = 〈N, T, V, P, S〉 with a count function count , h ≥ 0, v ≥ 1
Result: G and count updated to represent a Markovized and binarized LCFRS

with counts
foreach rule r = A(α)→ A1(α1) . . . Am(αm) ∈ P with m > 2 do

remove r from P ;

foreach vertical context ~V with which r occurs in the treebank do
R := ∅;
add the pair 〈A(α)→ C

~V
hc(r,1,h)(γ1), 1〉 to R where γ1 = α;

foreach i, 1 ≤ i ≤ m− 1 do

add the pair 〈C ~V
hc(r,i,h)(γi)→ Ai(αi)C

~V
hc(r,i+1,h)(γi+1), i+ 1〉 to R where

γi+1 is obtained by reducing γi with αi;

end
add the pair 〈CVhc(r,m,h)(γm)→ Am(αm),m+ 1〉 to R

c := the number of times r occurs with ~V in the treebank;
foreach pair 〈r′, i〉 ∈ R do

replace RHS arguments of length > 1 ∈ r′ with new variables (in both
sides);
if some r′′ ∈ P is identical to r′ via some bijection of the variables then

update count(r′′) := count(r′′) + c;
end
else

add r′ to P ;
set count(r′) := c;

end

end

end

end

Algorithm 4.2: Binarization algorithm with Markovization
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SBARQ(XY ) → SQ(X).(Y )

SQ(V ) → C
〈SQ〉
〈VP〉(V )

C
〈SQ〉
〈VP〉(XV U) → VP(X,U)C

〈SQ〉
〈MD,VP〉(V )

C
〈SQ〉
〈MD,VP〉(Y Z) → MD(Y )C

〈SQ〉
〈NP,MD〉(Z)

C
〈SQ〉
〈NP,MD〉(Z) → NP(Z)

VP(X, Y ) → WHNP(X)VB(Y )

WHNP(X) → WP(X)

NP(X) → PRP(X)

Figure 4.4.: The grammar from Figure 4.2, left-to-right binarized with Markovization (v =
1, h = 2)

A final change is that, following Klein and Manning (2003b), a unary “top” rule is

introduced before the leftmost RHS element of the original rule is split off, and a unary

“bottom” rule is used to split off the rightmost RHS element. This provides additional

factorization.

A binarized version of the example grammar in Figure 4.2 with Markovization is

shown in Figure 4.4. The only non-binary rule is binarized to four rules: the first one is

the “top” rule. In each of the subsequent three rules, one of the original RHS elements is

“split off” while the remaining elements (if any) are grouped under a new non-terminal

and factored out to the remaining rules. The new non-terminal symbols contain the

vertical and horizontal context. In this case, v = 1, so the vertical context consists of

only the LHS non-terminal of the original rule, SQ. h = 2, so the vertical context of

each original RHS element consists of the non-terminal of this RHS element, followed by

the non-terminal of the preceding RHS element (if any). The horizontal context of each

RHS element is recorded on the new non-terminal that appears as the LHS non-terminal

of that rule which splits off this RHS element.

4.1.2. Order of binarization

Unlike CFG, the order of the RHS elements in an LCFRS is immaterial. Therefore, they

can be reordered before binarizing. In the case of binarization with Markovization of a

PLCFRS, the order can influence parsing accuracy since it determines for RHS predicates
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SBARQ(XY ) → SQ(X).(Y )

SQ(XY ZU) → VP(X,U)NP(Z)MD(Y )

VP(X, Y ) → WHNP(X)VB(Y )

WHNP(X) → WP(X)

NP(X) → PRP(X)

Figure 4.5.: The grammar from Figure 4.2, head-outward reordered

which other RHS predicates they are conditioned on. Put differently, it influences which

independence assumptions one makes by using horizontal Markovization.

Klein and Manning (2003b) use head-outward binarization for binarizing CFGs, mo-

tivated by “the traditional linguistic insight that phrases are organized around a head”.

I.e., for each rule, that RHS element is first identified which represents the head of the

corresponding phrase. Then, elements are split off starting from the periphery, making

the head the “lowest” element. In the case of LCFRS, this can be achieved simply by

reordering the RHS of each rule such that the head appears last. Before that, the ele-

ments right of the head appear, ordered from rightmost to leftmost in the original rule,

followed by the elements left of the head, ordered from leftmost to rightmost. (It is also

possible to put the elements left of the head before those right of the head, see below.)

Figure 4.5 shows the example grammar after being reordered in this way. Then apply-

ing the binarization algorithm results in a grammar binarized with a different order, as

shown in Figure 4.6. Figure 4.7 shows the parse tree resulting from parsing the exam-

ple sentence with this binarized grammar directly. This illustrates that the modal verb

tagged MD, which is the head of the SQ phrase, has become the most deeply embedded

one of the original RHS elements.

For identifying the head of a rule, I use the head-finding rules of Collins (1999). These

naturally refer to rules in a context-free grammar and rely on the RHS elements being

in a particular order. In the extraction algorithm of Section 2.2, however, the order of

RHS elements is undefined (since it is immaterial from the perspective of LCFRS) and in

practice follows the position of the leftmost dominated terminal, which may not match

the context-free order in the case of discontinuities. In the implementation, this problem

is solved by retaining the original order of the children of each node in the context-

free trees and basing the head-finding process on that order. A constituent that is

reattached in transformation is treated as assuming the position of the empty placeholder
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SBARQ(XY ) → SQ(X).(Y )

SQ(V ) → C
〈SQ〉
〈NP〉(V )

C
〈SQ〉
〈NP〉(V ZU) → C

〈SQ〉
〈VP,NP〉(V, U)NP(Z)

C
〈SQ〉
〈VP,NP〉(XY,U) → VP(X,U)C

〈SQ〉
〈MD,VP〉(Y )

C
〈SQ〉
〈MD,VP〉(Y ) → MD(Y )

VP(X, Y ) → WHNP(X)VB(Y )

WHNP(X) → WP(X)

NP(X) → PRP(X)

Figure 4.6.: The grammar from Figure 4.2, head-outward binarized with Markovization (v =
1, h = 2)

SBARQ

SQ

C
〈SQ〉
〈NP〉

C
〈SQ〉
〈VP,NP〉

VP

WHNP C
〈SQ〉
〈MD,VP〉 NP

WP MD PRP VB .
What should I do ?

Figure 4.7.: Parse of the sentence using the grammar in Figure 4.6 before debinarizing
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constituent that is removed in exchange. This also has the effect that (extracted) WHNP,

WHPP, WHADVP and WHADJP nodes may appear in positions where the head-finding

rules assume an NP, PP, ADVP or ADJP node. The rules have thus been modified to

treat categories with and without the WH prefix alike.

Another consideration for binarization is that as a result of reducing argument se-

quences, the newly introduced rules in binarized grammars may have a higher fan-out

than the predicates of the original rule, possibly leading to a higher fan-out of the gram-

mar. The parsing complexity of an LCFRS is exponential in both its rank and its fan-out,

so binarization potentially means trading one evil for another. Gómez-Rodŕıguez et al.

(2009) report that typically, in the context of syntactic structures, binarization does not

lead to a (strong) increase in fan-out. Still, it may be beneficial to binarize in an order

such that a grammar with minimal fan-out is obtained.

The following are the binarization strategies I have tried out. Some of the RHS

reorderings are given as sequences of the original RHS position numbers, p being the

head position and m the rank of the original rule:

det-lr Binarization without Markovization, no reordering.

ho-lr RHS reordered withm, . . . , p+1, 1, . . . , p, the result is a head-outward binarization,

i.e. the head is the lowest subtree. It is extended by first adding all its sisters to the

left, then all its sisters to the right. This is the order used in Maier and Kallmeyer

(2010) for discontinuous constituent parsing of German.

ho-rl RHS reordered with 1, . . . , p−1,m, . . . , p, the result is a head-outward binarization,

i.e. the head is the lowest subtree. It is extended by first adding all its sisters to the

right, then all its sisters to the left. This is the order used in Klein and Manning

(2003b) for context-free parsing of English.

lr RHS not reordered, the result is a right-branching binarization.

rl RHS reversed, the result is a left-branching binarization.

min Strategy for minimizing fan-out and the number of variables. In each iteration, an

RHS element is split off such that the resulting fan-out is minimal. Ties are broken

by minimizing the number of variables in the binary rule to introduce. The exact

algorithm is given in Kallmeyer (2010, Chapter 7).
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4.2. Category splitting

Category splitting is a technique with a purpose similar to Markovization, viz. cutting

back on certain independence assumptions in order to speed up parsing and increase

accuracy. It consists in splitting certain constituent categories, i.e. relabeling internal

nodes in the treebanks before extracting the grammar, depending on context. This

can improve the model in cases where certain expansions of a non-terminal symbol

correlate with certain contexts in which that non-terminal symbol occurs. Maier and

Kallmeyer (2010) report improved parsing accuracy in their model for German after

manually introducing two splits: relabeling S nodes to SRC where the node is the root

of a relative clause and relabeling VP to VP, VP-PP, VP-INF or VP-ZU depending on

the form of the head verb. The following two splits for the Penn Treebank annotation

can be defined analogously:

SWH S nodes are relabeled to SWH if they root a question or a relative clause. This

is the case if, before the transformation to the discontinuous format, the parent of

the node is an SBAR node and has a child node whose label starts with WH (cf.

Section 3.3.1). In the discontinuous constituent parsing experiments where this

split is used, SBAR nodes that have only one child after the transformation are

removed (both in the training and gold standard test corpus) so the category split

has an effect on the rule extracted from the phrase in which the clause appears.

This split aims to reflect the fact that clauses with extracted wh-elements appear

in different contexts from other sentence-level constituents, e.g. relative clauses

frequently occur as post-nominal modifiers.

VPPART/INF VP nodes are relabeled to VPHINF if their head is an infinitive (tagged

VB) or the to introducing a to-infinitive (tagged TO) and to VPHPART if the

head verb is a participle or gerund (tagged VBN or VBG). The head verb is found

by looking for the leftmost daughter node of the VP node whose tag starts with VB.

This split aims to reflect the fact that infinitival and participle/gerund verb phrases

tend to occur in different contexts from finite ones, e.g. finite verb phrases occur

less frequently as a dependent of another verb or a preposition than infinitives,

participles or gerunds.

In addition, three further splits were defined for the Penn Treebank annotation:

SINF/PRO S nodes rooting infinitival clauses are relabeled to SPRO if the subject is the

empty subject * (cf. Section 3.5.1), and to SINF otherwise. In order for the empty
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subject information to be available, this split is carried out before the transforma-

tion to the discontinuous format. This split is designed to be used in combination

with VPPART/INF, percolating the information about infinitive head verbs one level

higher up in the (not yet binarized) tree and allowing the grammar to distinguish

the contexts of infinitival vs. non-infinitival clauses, and in addition to distinguish

the contexts of clauses where the subject is empty, such as in raising and control

constructions.

SINF A variant of SINF/PRO that does not distinguish between infinitival clauses with

empty and non-empty subjects and relabels both to SINF.

VPPART/INF/TO A variant of VPPART/INF where to-infinitives are distinguished as a cate-

gory VPHTO distinct from VPHINF. This split is intended to capture distributional

characteristics of bare infinitives vs. to-infinitives, e.g. the former are selected by

modal verbs (tagged MD) while the latter are not.

When using splits, the split categories in the parser output are mapped back to their

original categories before evaluation, and evaluated against the unsplit gold standard.

4.3. Estimates and Cutoff

The parsing algorithm presented in Section 2.3 is guaranteed to find the most probable

parse first, and thus to output it as the result. A disadvantage is that very many items

may have to be processed before arriving at a parse. It is possible to equip items with

outside estimates, i.e. roughly the estimated probabilities of them leading to a successful

parse. In retrieving items from the agenda, the parser can then prioritize items with

good estimates and thus find a parse more quickly. Klein and Manning (2003a) use

outside estimates for parsing CFG. Their method of calculating estimates is monotonic,

a condition under which the first parse found is still guaranteed to be the best one (A*

parsing). Monotonic estimate types for PLCFRS are presented in Kallmeyer and Maier

(2010), but found to be too expensive to compute for practical parsing. Maier (2010)

therefore uses a non-monotonic type of estimate for PLCFRS parsing, SX simple LR

estimate, which is found to be relatively effective for reducing parsing time without an

excessive loss in accuracy despite not always finding the best parse.
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Another way to reduce the number of items produced is cutoff, i.e. discarding very

infrequent rules. For a cutoff value n, every rule r with count(r) ≤ n is removed from

the binarized grammar before computing the probabilities.

4.4. Experimental choice of parameter settings

To find a good set of parameter settings, a series of parsing experiments on the same

data but with different settings was performed. The goal was not to determine an

absolute optimal combination of parameter settings, which would be hardly feasible

seeing that such optima can be highly data-dependent, but to gain an overview of the

effects of individual parameters on the data at hand and to find a reasonable combination

of settings for the main experiments in the next chapter. Therefore, not all possible

combinations were tried out – instead, in most cases one parameter was varied while the

other parameters remained fixed.

4.4.1. Data set

Due to time constraints, a relatively small data set with 3600 sentences for training and

400 sentences for testing was chosen from the transformed treebank for this series of

experiments, and only sentences with at most 25 tokens after removing null elements

were included.

The training and test set were each chosen to be representative of the whole corpus

in the sense that each of the five types of reattachment operation distinguished in Sec-

tion 3.6 should occur with the same relative frequency as in the whole corpus. Since

31% of all trees (15452 of 49208) contain the result of a reattachment operation of type

*T*, 1116 (31% of 3600) were chosen at random and added to the training set, and 124

(31% of 400) were chosen at random and added to the test set. Similar for the other four

types. The process was repeated a few times until a training set and test set were found

that did not overlap and each had the desired number of sentences with reattachment

operations (36%, i.e. 1296 for training, 146 for testing), thereby implicitly excluding

sentences which contain more than one type of reattachment. This is a somewhat artifi-

cial constraint, but one that does not make a great difference given the already limited

sentence length and the infrequency of different types of reattachment in one sentence.

Finally, the remaining 64%, 2558 sentences without reattachment operations, were cho-
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sen at random, 2304 of them added to the training set and the remaining 254 to the test

set.

4.4.2. Evaluation

For comparative evaluation of the parser outputs given different parameter settings, the

EVALB-style metric from Maier and Kallmeyer (2010) was used: each constituent in a

tree over a string w is represented by a pair 〈A, ~ρ〉 where A is the label of the constituent

root and ~ρ ∈ (Pos(w)×Pos(w))dim(A) contains the (ordered) ranges of leaves dominated

by the constituent root. Precision, recall and f-measure are computed in the usual way

by comparing the pairs appearing in the gold standard vs. the pairs appearing in the

parser output.

4.4.3. Experiments and results

The combinations of parameter settings tried out are given as the rows of Table 4.1.

For each combination, one experiment was conducted on the transformed version of

the small corpus. For comparison, the experiments were later repeated on the untrans-

formed, context-free versions of the trees, after only making corrections (see Appendix A)

and taking the usual preprocessing steps for parsing the Penn Treebank (removing null

elements, removing non-terminals without children until none are left, and removing all

indices from node labels). However, the focus for choosing the “best” settings was on

the discontinuous, transformed trees. As a measure of the relative complexity of and

hence parsing time taken by each experiment, the number of items produced during the

parsing processes for all 400 sentence in the small test corpus is given, in millions (mil.

it.) As a measure of accuracy, labeled (lf) and unlabeled f-measure (ulf) are given.

A first series of experiments explored different Markovization settings, using ho-lr

binarization, no estimates, no cutoff and no category splits. The varying parameters

were vertical Markovization (1 or 2) and horizontal Markovization (0, 1 or 2). All

combinations were tried out. The different degrees of vertical Markovization made only

a small difference for accuracy, whereas accuracy increased considerably with the degree

of horizontal Markovization, making a vertical degree of 1 and a horizontal degree of 2

the winning combination. This is the combination used for parsing German in Maier
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transformed small corpus context-free small corpus

v h bin est cut split mil. it. lf (%) ulf (%) mil. it. lf (%) ulf (%)

1 0 ho-lr - - - 98 60.09 65.10 2 63.18 67.85

1 1 ho-lr - - - 66 66.20 71.57 6 72.25 77.33

1 2 ho-lr - - - 75 69.59 74.96 17 72.02 77.24

1 3 ho-lr - - - 99 68.25 73.91 32 72.18 67.97

2 0 ho-lr - - - 155 59.94 65.15 30 61.99 66.69

2 1 ho-lr - - - 150 64.31 69.56 34 68.34 73.11

2 2 ho-lr - - - 166 68.27 73.68 56 71.62 76.92

1 2 ho-rl - - - 65 69.62 74.85 16 71.30 76.37

1 2 lr - - - 107 69.93 75.30 18 71.13 76.42

1 2 rl - - - 63 68.38 73.91 24 72.56 77.57

1 2 min - - - 99 70.32 75.87 - - -

- - det-lr - - - 56 71.69 76.79 33 74.56 79.22

- - det-lr sxslr - - 43 68.62 74.18 28 68.76 74.24

- - det-lr - 1 - 12 68.49 73.45 8 71.17 75.92

1 2 ho-lr - 1 - 18 65.06 70.48 7 67.29 72.19

- - det-lr - - SWH 52 72.73 76.85 33 73.65 78.39

- - det-lr - - VPPART/INF 54 73.34 77.27 31 75.39 79.31

- - det-lr - - VPPART/INF/TO 54 73.39 77.18 31 74.74 78.42

1 2 ho-lr - - VPPART/INF/TO 64 70.86 75.40 18 73.11 77.35

- - det-lr - - VPPART/INF/TO◦ SINF 50 74.07 77.45 28 76.20 79.54

- - det-lr - - VPPART/INF/TO◦ SINF/PRO 50 73.22 76.75 28 76.07 79.52

- - det-lr - - SWH◦ VPPART/INF/TO 49 75.76 78.75 31 74.88 78.20

- - det-lr - - SWH◦ VPPART/INF/TO ◦ SINF 42 75.34 78.11 28 75.85 78.93

Table 4.1.: Experimental choice of parameter settings, results. In each series on the trans-
formed corpus, bold figures indicate the strongest improvement (if any) over the
previous comparable combination of parameter settings.
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and Kallmeyer (2010) as well. A further experiment raising horizontal Markovization to

3 saw accuracy decline again.

With the Markovization degrees fixed, a second series explored the five alternative

binarization strategies. Somewhat surprisingly, the most primitive strategy without

Markovization, det-lr, performed best. The second best results were obtained with the

min strategy. For the context-free case, where the unbinarized extracted grammar is

necessarily a 1-LCFRS with exactly one argument per non-terminal and one variable

per RHS element, the min strategy was left out as there is no room for optimization and

it would default to the same binarization as produced by the lr strategy.

Using the outside-probability estimate or a cutoff with n = 1 reduced parsing time,

drastically in the case of the cutoff, but only at the price of a considerable loss in

accuracy. Both techniques were therefore abandoned for the remaining experiments.

The next series of experiments explored the three most basic category splits: SWH,

VPPART/INF and its finer-grained variant VPPART/INF/TO. Each of the three splits by

itself reduced the total number of items slightly and increased labeled f-measure by about

1%. The last of these splits was also tried out with the more sophisticated binarization

strategy ho-lr to see if this strategy can profit significantly more from it than det-lr, but

this was not the case. There was almost no difference in the gains afforded by VPPART/INF

and its finer-grained variant VPPART/INF/TO. The remaining experiments focused on

the latter, first combining it with SINF (and its finer-grained variant SINF/PRO, which

performed worse), then adding SWH. In each step, accuracy could again be boosted

by about 1%, showing that the splits do not only work in isolation, but their positive

effects can – to some degree – be combined. Excessive use of more splits, however, would

increase the number of categories further and could thus lead to a new data sparseness

problem. This perhaps already shows in the fact that the winning combination of splits

in terms of accuracy is not SWH ◦ VPPART/INF/TO ◦ SINF, but, by a small amount, the one

obtained when leaving out SINF. However, seeing that data sparseness problems would

presumably be mitigated when using the full training corpus, and that the three-split

combination was a clear winner in terms of efficiency, it was ultimately chosen for the

main parsing experiments in Chapter 5.

It becomes clear from these figures that category splits are a promising way to im-

prove PLCFRS parsing. It is also clear that they warrant a much more systematic

investigation. For example, Maier and Kallmeyer (2010) envision coming up with useful

splits automatically rather than manually, by adapting a technique to PLCFRS that was
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presented and successfully used by Ule (2003) for PCFG. Another such technique, pre-

viously used for successfully for parsing English, is split-state grammars (Petrov et al.,

2006).

The fan-out of the grammar extracted from the small training corpus is necessarily 1

in the context-free case, and 3 in the discontinuous case, corresponding to the maximal

gap degree of 2 found in Section 3.6. In no experiment did the fan-out increase as a

result of binarization.

In the context-free experiments, much fewer items are produced due to the lower

parsing complexity in the case of 1-LCFRS as opposed to 3-LCFRS and also due to

a smaller number of extracted rules (by about 10%). Absolute parsing accuracy is

also considerably higher in the experiments where no splits are used. The relative

results are not much different, though: while the combinations of Markovization degrees

rank differently here (but not by much), the preference for deterministic left-to-right

binarization is confirmed. So are the effects of the outside-probability estimate and of

cutoff 1. The effect of splits is less significant than in the discontinuous case, especially

where the SWH split is used. In the discontinuous case, this split makes the removal

of SBAR nodes possible which presumably block relevant contextual information from

being propagated in the trees (further splits could be used to try to propagate this

information through SBAR nodes in the context-free case). It should be kept in mind

that higher figures for the context-free experiments do not necessarily indicate better

parses as they are evaluated against a less informative gold standard (no non-local

dependencies) than in the discontinuous experiments. This point will be taken up again

in evaluating the results of the main parsing experiments in the next chapter.
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Chapter 5.

Main experiments and evaluation

This chapter presents and evaluates two parsing experiments, one discontinuous and one

context-free. They both use sections 1-22 of the WSJ treebank for training and section

23-24 for testing. Due to limited time and the complexity of LCFRS parsing, both

training and testing was restricted to those sentences from the respective sections that

have no more than 25 tokens after removing null elements. This amounts to a training

set of 25801 sentences and a test set of 2233 sentences. Parsing is carried out with the

parameter settings chosen in the previous chapter, i.e. deterministic binarization, no

Markovization, no estimates, no cutoff and with the category split SWH◦V PPART/INF/TO◦
SINF . As in the previous chapter, the context-free experiment uses the WSJ treebank

with the corrections presented in Appendix A, null elements, empty constituents and

indices removed, and the discontinuous experiment uses the version of the corrected

treebank transformed using Algorithm 3.2. Table 5.1 shows the results of evaluating the

parse trees against the gold standard annotation of the test corpus, using the EVALB-

style metric already used in the last chapter, now not only showing f-measure but also

recall and precision.

As already noted at the end of the previous chapter, a meaningful comparison be-

tween the EVALB-style evaluation results of discontinuous and context-free experiments

is difficult, as the evaluation is against different gold standards. The transformed tree-

bank differs from the untransformed treebank in that it 1) contains non-local attachment

that induces additional semantically relevant dependencies and 2) leaves out instances

of local attachment of dependents removed from their interpretation locations, i.e. at-

tachment that does not systematically induce semantically relevant dependencies. Thus,

if the goal is to assess how much closer discontinuous parsing comes to the ideal of a

71
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discontinuous context-free

million items produced 1056 580

labeled recall 77.61% 76.94%

labeled precision 80.36% 80.37%

labeled f-measure 78.96% 78.61%

unlabeled recall 80.88% 80.33%

unlabeled precision 83.74% 83.91%

unlabeled f-measure 82.29% 82.08%

Table 5.1.: EVALB-style evaluation of the big parsing experiments

syntactic representation inducing all the semantically relevant dependencies, both parser

outputs should be evaluated against the dependencies induced by the transformed gold

standard annotation of the test set. Such an evaluation methodology is offered by de-

pendency evaluation (Lin, 1995). This evaluation method has gained in popularity after

the deficiencies of EVALB-style evaluation became more and more apparent (see e.g. Re-

hbein and van Genabith, 2007) and is now a standard method for parser evaluation, also

because it directly reflects what is arguably the most important quality of a syntactic

representation for subsequent semantic interpretation: how well word-word dependencies

are recognized. Dependency evaluation has been used before for evaluating PLCFRS

parser output by Maier (2010).

A method is needed for converting the gold standard and both parser outputs from

constituent trees to sets of directed word-word dependencies 〈d, h〉 where d is the de-

pendent word and h is the head word. Like Maier, I use the standard method already

described in (Lin, 1995): among the children of every internal node in the tree, one is

marked as the head child. For this, the modified head finding rules from Collins (1999)

are used, (cf. Section 4.1.2). The lexical head of a node n is defined as n if n is a leaf (i.e.

a word), otherwise as the lexical head of its head child. Then for every internal node m

in the tree, for each non-head child c of m, a dependency 〈d, h〉 is recorded where d is

the lexical head of c and h is the lexical head of m. For each tree, a dependency 〈r, v〉 is

recorded where r is the lexical head of the root and v is a virtual word, meaning that r

does not depend on any real other word. Together these dependencies make up the set

of word-word dependencies induced by the constituent tree. For evaluation, both the
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discontinuous context-free

*T* 203
439

46% 136
439

31%

*T*-PRN 25
32

78% 8
32

25%

*ICH* 5
31

16% 4
31

13%

*EXP* 1
18

6% 0
18

0%

*RNR* 3
4

75% 2
4

50%

other 29983
35915

83% 29637
35915

82%

total 28202
36439

82% 27786
36439

81%

Table 5.2.: Unlabeled attachment score broken down by dependency type

parser output trees and the gold standard trees are converted to sets of dependencies

P (parser output) and G (gold standard). The unlabeled attachment score is given by
|P∩G|
|G| , i.e. the recall of unlabeled directed dependencies in the gold standard that were

“recognized” by the parser, or, equivalently, the percentage of tokens that are recognized

as depending on the correct head word.

A further advantage of dependency evaluation is that it allows for scoring individual

types of dependencies separately. To this end, the program implementing the transfor-

mation algorithm of Chapter 3 was extended so that on each reattachment operation

performed, it records the type of operation (cf. Section 3.6) and the dependencies thereby

created. The program computing unlabeled attachment score can then put dependencies

into different bins depending on their type and output separate recall scores. The unla-

beled attachment scores for the results of the two experiments are shown in Table 5.2.

As is to be expected, the scores for the five types of dependencies created by reat-

tachment operations that potentially introduce discontinuities are much higher for the

discontinuous experiment than for the context-free one, though the latter are not zero as

one might initially expect. The reason is that even in context-free trees, the dependency

conversion method described above sometimes incidentally introduces correct non-local

dependencies. This can be seen in a tree as simple as the first example in Figure 3.2

(left): the non-local dependency relevant here is that of the pronoun What on the verb

do. Since do is the lexical head of the SBARQ root, which also has a child whose lexical

head is What, this dependency is produced. If it is an advantage that in the discontinu-
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ous analysis (Figure 3.2, right) the dependent directly enters into a relation with its verb

head even on the level of constituents, then this advantage is not taken into account by

dependency evaluation.

Another slight problem is that the head-finding algorithm needed for dependency

conversion does not work quite reliably on the (unordered) discontinuous parse trees

since it partly relies on a particular order of the children of each node, which can only

be approximated by ordering nodes by leftmost dominated token.1 Finally, the numbers

in the table give a rough idea of which types of non-local dependencies are problem-

atic (especially *ICH* and *EXP*), but do not say much about potential reasons and

types of errors made by the parser. The rest of this chapter will therefore focus on a

manual analysis of the parse trees and of the non-local dependencies recognized (or not

recognized) in the discontinuous parsing experiment.

5.1. Manual evaluation of discontinuities

Not all transformation operations introduce discontinuities. Recall, for example, that

right-node raised constituents are almost always reattached so that no discontinuity is

introduced, and wh-movement from the subject position does not normally introduce

a discontinuity either. To gain an insight into how well the parser deals specifically

with recognizing discontinuities, a manual evaluation of all sentences with discontinu-

ities in the test set was performed. The grammatical phenomena that cause disconti-

nuities have been categorized into six classes: wh-movement, fronted quotations, other

fronted arguments (all three corresponding to the *T* transformation operation from

Section 3.6), circumpositioned dependents (corresponding to *T*-PRN), it-extraposition

(corresponding to *EXP*) and discontinuous dependency (corresponding to *ICH*). Ta-

ble 5.3 shows for each class how many instances appear in the test set and how many

of them were recognized by the parser fully, partially, or not at all. The following six

subsections discuss the six classes, possible reasons for success and failure, and types

of errors. 77 discontinuities found by the parser do not have corresponding discontinu-

ities in the gold standard, thus were classified as false positives and roughly assigned

1A head-finding algorithm adapted to discontinuous trees that could be used to solve this problem is
presented in Levy (2005, p. 128).
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wh-movement gold-standard 129

fully recognized 108 84%

moved phrase too small 1 1%

moved phrase too big 1 1%

moved phrase misattached 5 4%

not recognized 14 11%

fronted quotations gold standard 142

fully recognized 129 91%

fronted phrase too small 7 5%

not recognized 6 4%

other fronted arguments gold standard 6

fully recognized 0 0%

fronted phrase too big 1 17%

not recognized 5 83%

circumpositioned dependents gold standard 31

fully recognized 22 71%

left part too small 1 3%

not recognized 8 26%

it-extraposition gold standard 14

recognized 2 14%

not recognized 12 86%

discontinuous dependency gold standard 30

recognized 2 7%

not recognized 28 93%

Table 5.3.: Causes of discontinuities in the transformed treebank and their rates of recogni-
tion by the parser
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wh-movement 2

fronted quotations and other fronted arguments 25

discontinuous dependency and it-extraposition 44

circumpositioned dependents 6

Table 5.4.: Incorrectly recognized discontinuities (false positives), roughly classified by the
grammatical phenomenon the parser seems to have recognized

.

to specific causes of discontinuity incorrectly suggested by the parse trees, as shown in

Table 5.4. These cases are discussed in Section 5.1.7.

The node labels of gold standard and parse trees shown in this section reflect the

category splits, they have not yet been conflated back to the original categories for

evaluation. This way, some decisions of the parser become more transparent.

5.1.1. wh-movement

The test set contains 129 discontinuities that arise through wh-movement. Credit for

recognizing an instance is given to the parser if there is a node in the parse tree whose

lexical head is the lexical head of the phrase containing the interpretation location of

the moved wh-phrase in the gold standard, which also dominates the moved wh-word,

and whose root does not dominate some tokens occurring between the wh-word and the

head. In order for the instance to count as “fully recognized”, this node must dominate

all the tokens of the the whole moved wh-phrase, as defined by the gold standard, and

must not dominate the token immediately to the left or immediately to the right of the

moved phrase. If one of the last two criteria is not fulfilled, partial credit is given as

“moved phrase too small” resp. “moved phrase too big”. Partial credit is also given if

the correct phrase is recognized as moved, but attached at a wrong level such that it

depends on the wrong lexical head.

wh-movement is fully recognized in most cases, even when the interpretation location

of the moved wh-phrase is quite deeply embedded into the clause and thus a relatively

large number of “stacked” discontinuous constituents is needed, as in Figure 5.1. The

occurrence of this type of discontinuity strongly correlates with the occurrence of a wh-
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Figure 5.1.: Correct parse of a deeply embedded moved wh-phrase
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Figure 5.2.: Incorrect parse: among other errors, the moved wh-phrase is attached to the
wrong VP.
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Figure 5.3.: Parse with incorrectly resolved attachment ambiguity: with which depends on
agreements according to the gold standard, not has.
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Figure 5.4.: Incorrect parse: a too small wh-phrase is recognized as moved. It should be a
whole WHNP how many more of these shocks. Instead, the remaining part of
the wh-phrase is incorrectly attached to the subject NP.
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Figure 5.5.: Incorrect parse: an adverb from outside a clause is incorrectly attached to its
moved wh-phrase.
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Figure 5.6.: Incorrect parse: wh-movement is not recognized due to the relative complemen-
tizer that being mistagged.

word (tagged WDT, WP, W$ or WRB) followed by a noun phrase (the subject of the

clause) before the next verb. This is presumably what makes recognition easy for the

parser. It also correctly attaches recognized wh-phrases in all but 5 instances, in 4 of

which the correct attachment site is unavailable due to other parsing errors (see e.g.

Figure 5.2) and one of which (Figure 5.3) has a genuine attachment ambiguity. This

small number of attachment errors reflects another regularity in the data: wh-phrases

usually attach at the lowest phrase in a stack of verbal phrases. Errors of the types

“moved phrase too small” (Figure 5.4) or “moved phrase too big” (Figure 5.5) are even

rarer, with one instance each.

Of the 14 instances of wh-movement not recognized by the parser, eight involve a

plain tagging error in the original Penn Treebank annotation: the word that is tagged IN

although it introduces a relative clause and should thus be tagged WDT (cf. Santorini,

1990). Such relative clauses are then usually not recognized as a constituent at all by

the parser, see e.g. Figure 5.6.

The remaining six instances of missed wh-movement seem to be due to the same

kinds of reasons that context-free parsers fail to recognize some continuous constituents:

the correct analysis would require the use of rules that occur rarely or not at all in

the training corpus while there are other rules that can be used to construct a valid

but potentially nonsensical parse with a high probabilistic score. One might think

that in the present setup where no horizontal Markovization is used, VP nodes with

many children might be a main reason for such problems due to sparse training data:

beyond various argument structures, the grammar rules are further diversified by S
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Figure 5.7.: Gold standard and parse: an unusual construction involving wh-movement, not
recognized.



Main experiments and evaluation 81

``

``

This

DT

further

RB

confuses

VBZ

retailers

NNS

,
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she
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says
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.
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Figure 5.8.: Correct parse: fronted quotation in a sentence with regular word order

and VP category splits and by wh-moved vs. non-wh-moved arguments. However, in

the instances of unrecognized wh-movement found, the SWH and VP rules required

for the correct analysis are fairly frequent, the problem is more likely with recogniz-

ing the context in which an SWH constituent can occur. One example is shown in

Figure 5.7. The unusual construction involved is a fused relative clause that serves

as the subject of a sentence with subject-verb inversion (SINV). Here, both of the

rules directly involved with the discontinuity, SWH1(XY Z) → VP2(X,Z)NP1(Y ) and

VP2(X, Y Z)→WHNP1(X)VBD1(Y )PP1(Z), are frequent, and the rare rule the parser

fails to apply is SINV1(XY )→ VP1(X)SWH1(Y ). The other false negatives are similar

in this respect: the problem does not seem to be with the discontinuous rules but with

other rules.

In the presence of wh-words, wrong analyses involving SBAR such as that shown in

Figure 5.7 are made possible by rules of the form SBAR1(XY )→W...1(X)S1(Y ). These

still occur in the transformed treebank mainly because of incompletely annotated wh-

movement in the original treebank where coindexed null elements were omitted and thus

reattachment to the interpretation location did not take place in the transformation.

5.1.2. Fronted quotations

As a characteristic of newspaper text, fronted quotations (cf. Section 3.3.2) are a par-

ticularly frequent construction introducing discontinuities in the WSJ treebank. They

come in two broad flavors, characterized by rules of the forms S1(. . . X . . . Y Z . . .) →
. . .VP2(X,Z) . . .NP1(Y ) . . . for standard word order as shown in Figure 5.8 and SINV1(

. . . X . . . Y Z . . . ) → . . .VP2(X, Y ) . . .NP1(Z) . . . for subject-verb inverted word order
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Figure 5.9.: Correct parse: fronted quotation in a sentence with inverted word order
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Figure 5.10.: Incorrect parse: a fronted quotation is recognized, but too small.

as shown in Figure 5.9. The dots stand for various patterns of punctuation; conjunc-

tions and adjuncts attached at sentence level can also occur. With inverted word order,

the discontinuity is only caused by punctuation which is attached at sentence level and

intervenes between the quotation and the verb of saying on which it depends. With

standard word order, the subject of the sentence (i.e. the NP denoting the person or

organization quoted) also intervenes. There is a third, much less frequent discontinu-

ous construction used for quotations, where the sentence starts with the verb of saying.

However, such sentences are treated as instances of discontinuous dependency (*ICH*)

in the Penn Treebank annotation and are thus dealt with in Section 5.1.5.

A fronted quotation is scored as fully recognized if it is parsed as one constituent

and attached to the same VP node as the verb of saying. Examples of fully recognized

fronted quotations are given in Figures 5.8 and 5.9. Partial credit is given if a fronted

phrase is recognized and correctly attached but contains only part of the actual quotation

(“fronted phrase too small”) as exemplified in Figure 5.10. As an exception, attaching
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Figure 5.11.: Incorrect parse: a circumpositioned dependent is recognized instead of a fronted
one.

a sentence-initial conjunction to the fronted quotation when the gold standard attaches

it to the matrix sentence, or vice versa, is not penalized. Like wh-movement, fronted

quotations turn out to pose no major problem to the parser, presumably due to their

high frequency and characteristic structure. 129 out of 142 instances are fully recognized,

another seven with some material missing from the fronted quotation. The six unrecog-

nized instances can be said to involve relatively complex and rare constructions such

as coordination within the fronted quotation or comma-separated enumerations, but

mostly resist attempts to find a single obvious source of error. Worth highlighting are

two cases, one of which is shown in Figure 5.11, where a postverbal adjunct is analyzed

as belonging to the quotation, which is thus incorrectly parsed as a circumpositioned

dependent (cf. Section 5.1.4 below).

In the last example, two paired quotation marks are parsed each as an opening

quotation mark. This illustrates that with the possibility for quotation marks to attach

either inside or outside the constituent they surround, there is no mechanism by which

the PLCFRS model could reliably match pairs of quotation marks since both may well be

introduced by separate rules in the correct parse. As a result, the parser profits from the

quotation marks only to a limited degree to recognize the structure of a sentence and may

even be confused as in the present example. The asymmetric attachment of quotation

marks is to a great extent due to the decision of the Penn Treebank annotation guidelines

to put them “at the very bottom of the pecking order” (Bies et al., 1995, Section 3.1.1)

among punctuation marks, in combination with the requirement for context-freeness.



84 Main experiments and evaluation

how

WRB

far

RB

down

RB

it

PRP

is

VBZ

,

,

we

PRP

do

VBP

n't

RB

know

VB

NPNPWHADVP

WHADJP

VP

SBJ

SWH

VPHINF

VP

SBJ

S

``

``

how

WRB

far

RB

down

RB

it

PRP

is

VBZ

,

,

we

PRP

do

VBP

n't

RB

know

VB

,

,

''

''

VPHINF

VP

NPNPWHADVP

VP

SWH

S

Figure 5.12.: Gold standard and parse: attachment of a fronted constituent at the VP level
in the gold standard, but at the sentence level by the parser (1 of 5 instances)

In particular, commas and periods are attached according to the same rules whether or

not they occur within a quotation, then quotation marks are attached wherever context-

freeness permits. A different annotation scheme that always makes pairs of quotation

marks siblings, possibly even using discontinuity for doing so, might be beneficial for

parsing accuracy, particularly for texts like in the WSJ treebank where quotations are

rather frequent.

5.1.3. Other fronted dependents

Outside of quotations, discontinuities arising through fronting are so rare that there are

only six instances in the test set, none of which is analyzed as mandated by the gold

standard. A problem here is that every fronted dependent (roughly, an argument or ad-

junct that appears before the subject and before the inflected verb of a sentence) carries

a potential attachment ambiguity, viz. whether to attach it at the sentence level or at

the VP level. In the gold standard, the latter is done only for arguments and for adjuncts

whose interpretation location is in an embedded clause, other adjuncts are attached at
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Figure 5.13.: Gold standard and parse: attachment of a fronted constituent at the sentence
level in the gold standard, but at the VP level by the parser (the only instance)
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Figure 5.14.: Gold standard and parse: the fronted VP is recognized, but too big in the
parse.
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sentence-level (cf. Bies et al., 1995, Section 1.3.3). In the original context-free annota-

tion, this criterion only decides whether a *T* null element is introduced to specify an

interpretation location for the fronted dependent, its attachment is always at sentence

level to maintain context-freeness. Thus, in context-free parsing, the attachment am-

biguity does not arise. However, in the transformed treebank, the distinction, which

is very hard to make from a sequence of part-of-speech tags alone, decides between a

context-free analysis and a discontinuous analysis. It is therefore not surprising that the

parser often fails to make the distinction correctly and chooses continuous attachment

at sentence level in five of the six cases (see e.g. Figure 5.12) where the gold standard

specifies discontinuous fronting.

The choice between sentence level and VP level is presumably heavily influenced by

the category of the fronted dependent through the distribution of occurrences of rules

which produce fronted dependents in the training data: fronted phrases of category S are

almost always quotations and arguments of the inflected verb, and correctly recognized

as such in most cases, as the previous section shows. Moreover, in the one case where the

parser attaches a fronted dependent at the VP level where the gold standard mandates

the S level (Figure 5.13), the fronted dependent is also (incorrectly) parsed as of category

S. (This is a false positive, see Section 5.1.7 below.) Other categories such as SWH,

ADVP or NP are much less frequent as fronted dependents attached at VP level, giving

the parser a preference for attaching them at sentence level, insofar as five instances can

count as evidence. Figure 5.14 shows the only instance of a fronted constituent correctly

attached at VP level by the parser – here, the category is VP. However, what the parser

recognizes as the fronted VP is a too big phrase, so this instance receives only partial

credit.

5.1.4. Circumpositioned dependents

Circumpositioned dependents (cf. Section 3.3.2) are mostly quotations. These are like

fronted quotations, except that only part of the quotation appears at the left periphery of

the matrix clause, and the rest appears at the right periphery. As a legacy of the original

context-free annotation, their annotation in the gold standard also involves a PRN node

directly dominating the root of the matrix clause. However, whether this PRN node is

present or not is disregarded in the manual evaluation. A circumpositioned dependent

is counted as fully recognized whenever there is a discontinuous constituent made up of

exactly the tokens of the circumpositioned dependent, both the left and the right part,
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Figure 5.15.: Correct parse: fully recognized circumpositioned quotation
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Figure 5.16.: Incorrect parse: a circumpositioned quotation is recognized, but too small.
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Figure 5.17.: Gold standard and parse: the circumpositioned quotation is not recognized,
presumably due to the rare S2 rule.
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Figure 5.18.: Incorrect parse: circumpositioned quotation where the matrix clause is incor-
rectly recognized as a sentential adjunct
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Figure 5.19.: Incorrect parse: unrecognized circumpositioned quotation whose left part con-
sists of only a PP, interpreted by the parser as an adjunct to the matrix verb

and it is attached in the same VP as the matrix verb. For a relatively rare phenomenon

(31 instances in the test set), a fair share (22 instances) was fully recognized, an example

is given in Figure 5.15. Partial credit is given in the one instance where peripheral

material is missing from the discontinuous constituent (Figure 5.16).

The two commas that almost invariably separate the central part of the matrix

clause from the circumpositioned dependent seem to give a good clue to the parser as

to when this construction occurs. In terms of LCFRS rules, clauses with a circumpo-

sitioned dependent can be analyzed rather uniformly as being of category PRN with

the top rule PRN(XUY V Z)1 → ,1(U)S3(X, Y, Z),1(V ), with a few variations such as

SINV instead of S, or with quotation marks added. Further rules typically involved are

S3(X,UY, Z) → NP1(U)VP3(X, Y, Z), VP3(X, Y, Z) → VBD1(Y )S2(X,Z) and a few

variations concerning, for example, the verb form or the category of the embedded sen-

tence. With constructions with circumpositioned dependents almost always following

this simple structure and non-terminals with fan-out 32 appearing almost exclusively in

such constructions, there is not much here that could confuse the parser.

What is problematic and might have caused some of the eight cases of unrecognized

circumpositioned dependents is the expansion of S2 to the circumpositioned sentence

itself. Due to punctuation and adjuncts attached at sentence level, there are many

possible expansions for root nodes of sentences. Since the frequent S1 and the rare S2

2corresponding to nodes with gap degree 2, cf. Section 3.6
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Figure 5.20.: Gold standard: discontinuous dependency within a VP

(and likewise, the moderately frequent SINV1 and the rare SINV2) are different non-

terminals, training data for the expansions of the former cannot help with expansions

for the latter. The diversification and resultant sparseness of S2 rules is increased further

by the fact that circumpositioned sentences can be separated rather freely, e.g. between

initial conjunctions/adjuncts and the subject, after the subject, within the VP and so

on, each possible separation requiring a different rule. Thus, it is not surprising that

some circumpositioned quotations whose correct parse would require a more unusual

S2 rule, such as the one shown in Figure 5.17, are missed. Other shapes that missed

circumpositioning can take are the interpretation of the matrix sentence as an adjunct in

the actually embedded sentence (Figure 5.18) and the interpretation of the left part as

an adjunct in the matrix sentence, leaving only the right part as an embedded sentence

(Figure 5.19).

The sparseness problem for S2 rules is an instance of what is arguably a general

weakness of the PLCFRS model: what is the same category in the syntactic analysis is

separated into different categories depending on how many gaps there are in the yield.

One possibility to address this problem is to refine the probabilistic model so that it

distinguishes between expansions (RHS non-terminals and their order) and separations

(number of gaps and where they occur) as two different degrees of freedom for one and

the same category. A model in this spirit is proposed in Levy (2005, Section 4.8) and

awaits further research.
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Figure 5.21.: Gold standard: right-dislocated clause depending on the subject
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Figure 5.22.: Correct parse: two dependents on the same head; the closer one is adjoined at
a higher level.
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Figure 5.23.: Correct parse (though not conforming to gold standard, which appears to be
inconsistent here) of a rare quotation construction where the sentence begins
with the verb of saying



92 Main experiments and evaluation

it

PRP

is

VBZ

considering

VBG

``

``

all

DT

of

IN

its

PRP$

options

NNS

in

IN

light

NN

of

IN

the

DT

decision

NN

,

,

including

VBG

a

DT

possible

JJ

appeal

NN

NP

PP

NP

NP

PP

NP

PP

NP

PP

NP

NP

LOC

VPHPAR|

VP

NP

SBJ

S

it

PRP

is

VBZ

considering

VBG

``

``

all

DT

of

IN

its

PRP$

options

NNS

in

IN

light

NN

of

IN

the

DT

decision

NN

,

,

including

VBG

a

DT

possible

JJ

appeal

NN

NP

VPHPAR|

NP

PP

NP

NP

PP

NP

PP

NP

NP

NP

VPHPAR|

VP

NP

S

Figure 5.24.: Gold standard and parse: the NP all of its options, including a possible appeal
is not recognized as discontinuous, an intervening PP is incorrectly attached
within it.

5.1.5. Discontinuous dependency

“Discontinuous dependency” subsumes all those instances of discontinuity that arise

through the transformation of coindexed *ICH* null elements as described in Sec-

tion 3.3.3. A frequent case is that within a VP, a phrase a depending on the verb

is followed by a phrase b also depending on the verb and then by a phrase c which

depends on a or something within a. a and c then form a discontinuous constituent.

Where this construction occurs in the WSJ corpus, b is often a temporal phrase while c

often expresses a quantitative comparison. An example is shown in Figure 5.20. Other

examples are right-dislocated modifiers to the subject (see e.g. Figure 5.21), cases of

two dependents on the same head where the gold standard adjoins the closer dependent
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Figure 5.25.: Gold standard and parse: the NP the rights and the SINF to take the Fifth
Amendment are not recognized as forming a discontinuous constituent to-
gether, but are at least attached at the same level.

higher than the further removed dependent (Figure 5.22), and right-dislocated quota-

tions where the matrix sentence has an inverted word order (Figure 5.23).

Of the last two types, one instance of each was correctly recognized by the parser. In

no other of the 30 cases of discontinuous dependency in the test set was a discontinuity

recognized. There are varying degrees to which the parses still resemble the desired

analysis. In three cases, the constituency of the discontinuous phrase is preserved at

the price of incorrectly attaching the intervening material within the same constituent,

as exemplified in Figure 5.24. In six cases, the left and right part are recognized as

individual constituents and attached to the lowest node that properly dominates both

the left part and the intervening material (Figure 5.25), roughly corresponding to a sys-

tematic transformation of the discontinuous tree to a context-free tree as described e.g.
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Figure 5.26.: Gold standard and parse: the NP phone calls and the PP from nervous share-
holders are not recognized as forming a discontinuous constituent together.
The latter is attached deeply within the intervening material.
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Figure 5.27.: Gold standard and parse: the NP promises and the SINF to open negotiations
in Paris at the same time the last man left the premises are not recognized
as forming a discontinuous constituent together. The latter is attached at a
higher node in the tree than the former.
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Figure 5.28.: Gold standard and parse: not only aren’t the NP 7:30 EDT and the PP instead
of the normal 8:30 recognized as forming a discontinuous constituent together,
but the latter is not recognized as a constituent at all.
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Figure 5.29.: Correct parse of a discontinuous constituent resulting from it-extraposition

in Kübler (2005). However, three of these parse trees are further flawed by intervening

material attaching within the left or the right part of the discontinuous constituent. In

seven cases, the right part instead attaches at a node within the intervening material

(Figure 5.26) and in three cases at a node higher in the tree (Figure 5.27). The remain-

ing nine instances can only count as failures to recognize both the left and the right part

as constituents (Figure 5.28).

The near-zero recognition rate on this class of discontinuity can be explained by the

fact that it consists of rather infrequent and isolated constructions that do not have much

in common in terms of LCFRS rules, thus suffering massively from sparse data. What

they do have in common that it is almost always easy for the two parts of a discontinuous

constituent to be interpreted as individual constituents and to attach locally, the latter

due to attachment ambiguity, a well known problem also in context-free parsing. The

correct phrase for e.g. PPs as in Figure 5.26 to attach to often depends heavily on the

particular preposition (here: from) and the possible head words it could modify (better

calls than weekend). The present parsing model deduces the syntactic structure from

a mere sequence of part-of-speech tags which does not contain such lexical information.

Extending it to take some lexical clues into account might help to recognize this type of

discontinuity.
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Figure 5.30.: Gold standard and parse: The NP it and the SINF to generalize about a rea-
sonable price for puts are not recognized as forming a discontinuous constituent
together. The latter is attached deeply in the intervening material.
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5.1.6. it-extraposition

it-extraposition (cf. Section 3.3.4) is similarly infrequent and poorly recognized. Of the

14 such discontinuities in the test corpus, only two are correctly parsed. One correct

parse is shown in Figure 5.29. The range of shapes the incorrect parses take is less wide

than for discontinuous dependency in general: here, the right part or part of it attaches

at a node within the intervening material in all cases (Figure 5.30).

5.1.7. False positives

This section discusses cases of discontinuities in the parse trees where the gold standard

has no discontinuity. These instances cannot simply be classified as false positives of

the six causes of discontinuities. What can be seen in the parse trees is which LCFRS

rules were used to produce the discontinuities, and these can to some extent be traced

back to certain types of discontinuities in the training corpus. Note however that not

only are some rules involved in more than one type of discontinuity, it is also the case

in all LCFRSs extracted by the algorithm described in Section 2.2 that each instance

of discontinuity involves at least two rules specific to discontinuity, the two of which

can stem from different types of discontinuity. This possibility of recombination is a

potential source of error and nonsensical parses on one hand, on the other hand it can

afford useful generalizations, just like the possibility for extracted rules to recombine in

new ways in treebank grammars in general. Introducing some handy new terminology,

the two rules minimally involved in any instance of discontinuity are:

1. A “mixing rule” where two variables that occur in different arguments of one RHS

element occur as part of the same argument on the LHS. For example, the mixing

rule of the discontinuity in Figure 5.1 is SWH1(XY Z) → NP1(Y )VP2(X,Z). A

mixing rule is used to expand a node whose yield does not contain some gap that

the yield of one of its children contains. Thus, looking at it top-down, a mixing rule

“introduces” a gap into a parse tree while looking at it bottom-up, it “removes”

it. The “mixing category” of a discontinuity is the LHS non-terminal of its mixing

rule.

2. A “distributing rule” where two variables that occur in different arguments on the

LHS occur in arguments of different elements of the RHS. For example, the dis-

tributing rule of the discontinuity in Figure 5.1 is VPHPART2(X, Y )→WHNP1(X)

VBN1(Y ). A distributing rule is used to expand a node whose yield contains a gap
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Figure 5.31.: Incorrectly recognized wh-movement. The rule WHADVP1(X) → RB1(X)
exists due to tagging errors in the training corpus.

that none of the yields of its children contains. Thus, looking at it top-down, a

distributing rule “removes” a gap from a parse tree while looking at it bottom-

up, it “introduces” it. The “distributing category” of a discontinuity is the LHS

non-terminal of its distributing rule.

Optionally, a number of “carrying rules” can be involved in an instance of disconti-

nuity:

3. A “carrying rule” is a rule where two variables that occur in different arguments

on the LHS occur in different arguments of the same RHS element. For example,

the carrying rules of the discontinuity in Figure 5.1 are VP2(X, Y Z) → MD1(Y )

VPHINF2(X,Z), VPHINF2(X, Y Z) → VB1(Y ) VPHINF2(X,Z) and

VPHINF2(X, Y Z) → VB1(Y ) VPHPART2(X,Z).

A useful way to classify false discontinuities is by looking at their distributing and

mixing rules. Recall from Section 4.1.2 that in each rule one RHS element can be marked

as the “head” of the rule, corresponding to the head child of a node in a tree that is

expanded using this rule. For example, in the distributing rule of Figure 5.1 mentioned

above, the head is VBN1(Y ). It appears “right of the gap” since its only variable is on

the right among the LHS arguments.



Main experiments and evaluation 101

Several

JJ

fund

NN

managers

NNS

expect

VBP

a

DT

rough

JJ

market

NN

this

DT

morning

NN

before

IN

prices

NNS

stabilize

VBP

.

.

NP

PP

NP

NP

NP

VP

NP

S

VP

S

Figure 5.32.: Incorrectly recognized fronting
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Figure 5.33.: Incorrectly recognized fronting with mixing category SWH

I

PRP

was

VBD

laid

VBN

off

RP

in

IN

August

NNP

1988

CD

,

,

and

CC

after

IN

a

DT

thorough

JJ

and

CC

exhausting

JJ

job

NN

search

NN

,

,

was

VBD

hired

VBN

in

IN

August

NNP

1989

CD

.

.

NP

PP

ADJP

NP

NP

PP

VPHPAR|

VP

NP

PP

PRT

VPHPAR|

VP

VP

NP

S

Figure 5.34.: Two entangled instances of incorrectly recognized fronting with VP mixing
categories
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Discontinuities arising through wh-movement are characterized by the fact that

the head of the distributing rule is right of the gap and that a child with a WH category

appears left of the gap. There are two false positives in the test corpus where both is

the case, one of which is shown in Figure 5.31. Excluding cases of incorrectly recognized

circumpositioned dependents (see Section 5.1.4 below), there are 25 further false positives

where the head of the distributing rule is right of the gap. These can be classified as

false positives of fronting. The vast majority (23) of them have a clausal category

(i.e. starting with S) as mixing category (Figure 5.32), also a characteristic of actual

fronting. In ten of these instances, the clausal category is SWH – here, mixing rules

for wh-movement and distributing rules for fronting have been combined (Figure 5.33).

Only in the remaining two instances is the mixing category VP, and it is actually the

same mixing node shared by the two instances in the same sentence (and by one further

instance of incorrectly recognized extraposition), shown in Figure 5.34.

The failure of the PP in August 1989 in the last example to attach to the more

plausible VPHPART node can be seen as another illustration for the artificial infre-

quency of rules due to the separation of non-terminals with the same syntactic category

depending on fan-out, as discussed in Section 5.1.4. Here, a reason for the bad parse

may be that the required rule VPHPART2(X, Y Z) → PP1(X)VBN1(Y )PP1(Z) with

its two prepositional phrases, one of which is fronted, is too infrequent to beat even an

analysis involving the also rare construction involving a discontinuous PP containing a

discontinuous NP as shown in the diagram. Had the parser been allowed to take the

frequency of the continuous rule VPHPART1(XY Z) → VBN1(X)PP1(Y )PP1(Z) into

account in expanding the discontinuous category VPHPART2, the probabilities might

have been more representative of the training corpus and thus might have led to a better

parse. Note, however, that since the first PP is fronted in the discontinuous and not

fronted in the continuous rule, this example raises the additional point that the order

of RHS non-terminals might have to be factored out of the expansion of a rule as well

as the separation. This in turn touches upon the factorization afforded by horizontal

Markovization (cf. Section 4.1.1), underscoring that the topic merits a great deal of

thought – more than it can be given in the present work.

False positives of discontinuous dependency and it-extraposition cannot be dis-

tinguished from each other since rules that arise through the latter, such as NP2(X, Y )→
NP1(X)SINF1(Y ), appear also with other yields for the NP than it, in which case they

represent instances of discontinuous dependency. Between them, the two types have 44

false positives, exactly as many as there are actual instances of them in the test corpus
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Figure 5.36.: Incorrectly recognized discontinuous dependency with mixing category
VPHINF
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Figure 5.37.: An incorrectly recognized circumpositioned dependent, including a sentence-
initial adjunct
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Figure 5.38.: An incorrectly recognized circumpositioned dependent, including a sentence-
final adjunct

(almost none of which are correctly recognized, as seen in Sections 5.1.5 and 5.1.6). This

further highlights the fact that at least with the current parsing model, instances and

non-instances of these types of discontinuities are very hard to distinguish. As is charac-

teristic for it-extraposition and also common for discontinuous dependency, the mixing

category here is clausal in most (39) cases (Figure 5.35 shows an example), and as with

fronting, some (5) have mixing category SWH. The remaining five instances have other

mixing categories such as VPHINF (Figure 5.36).

Discontinuities arising through circumpositioned dependents are characterized

by clausal distributing categories and the mixing category PRN. There are six false
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Figure 5.39.: An incorrectly recognized parenthetical matrix clause with circumpositioned
dependent

positives, three where a sentence-initial adjunct is interpreted as part of a non-fronted

quotation (Figure 5.37), two where a sentence-final adjunct is interpreted as part of a

fronted quotation (Figure 5.38) and one where there is no quotation at all, but a VP

adjoined to the subject and surrounded by commas is interpreted as a matrix sentence

(Figure 5.39).

5.1.8. Summary and Conclusions

This section has analyzed parser performance in the discontinuous experiment specif-

ically with respect to discontinuities, broken down by the types of grammatical con-

structions causing them. The analysis has shown that wh-movement, fronted quotations

and circumpositioned dependents (mostly also quotations) are recognized reliably, with

few false negatives and few false positives. Fronted dependents other than quotations,

instances of discontinuous dependency and of it-extraposition, on the other hand, are

recognized correctly only in a vanishingly low number of cases while the PLCFRS rules

extracted from such constructions are involved in many incorrectly recognized instances

of discontinuity.



106 Main experiments and evaluation

The difference between the well recognized and the badly recognized constructions is

to some degree one of frequency and thus of both available training data and a skewed

test set, resulting in good odds for the parser to get it right by picking a frequent

construction (as would be the case in comparable freely occurring text). A possibly

even more important difference is in the presence of reliable clues in the parser input

(a sequence of part-of-speech tags) for each type of construction. For wh-movement,

such a clue would be a wh-word (recognizable by its tag) followed by a sentence. For

fronted and circumpositioned quotations, combinations of the parts of two sentences

(matrix and embedded clause) as well as certain punctuation patterns are characteristic.

Discontinuous dependency and it-extraposition lack such reliable clues since they almost

invariably give rise to attachment ambiguities that would probably require taking into

account lexical clues, if not a deeper semantic analysis, to resolve reliably.

Apart from ignoring important lexical information, a problem with the parsing model

used is that its probabilistic component treats as unrelated the different variants of one

syntactic category with respect to the degree of discontinuity (as given by gap degree

or fan-out), resulting in data sparseness especially for the higher-fan-out variants of

categories, as discussed in Sections 5.1.4 and 5.1.7. Certain difficulties of the parser

that can be attributed to this problem indicate a need for either vastly more training

data or a factoring of rules to make the expansion of rules more independent from

the different possible ways for them to be separated by discontinuity. Lastly, the way

punctuation, especially quotation marks, is attached in the transformed treebank as a

legacy of the original context-free annotation, proves to be problematic and could be

improved (Section 5.1.1), possibly along with other properties of the annotation scheme

that might have an impact on parser performance.

5.2. An experiment limited to the transformation of

*T* and *RNR* dependencies

As discussed in Sections 5.1.5, 5.1.6 and 5.1.7, instances of discontinuous dependency and

it-extraposition are almost never recognized, but LCFRS rules used in such construc-

tions are involved in many cases of incorrectly recognized discontinuities, so presumably

they doubly affect overall evaluation scores negatively. Resolving with reasonable relia-

bility the attachment ambiguities underlying the recognition and nonrecognition of such
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discontinuous

million items produced 1056

labeled recall 77.40%

labeled precision 80.44%

labeled f-measure 78.89%

unlabeled recall 80.65%

unlabeled precision 83.83%

unlabeled f-measure 82.21%

Table 5.5.: EVALB-style evaluation of the discontinuous parsing experiment limited to trans-
formation of *T* and *RNR* dependencies

discontinuous context-free

*T* 319
439

73% 137
439

31%

*T*-PRN 23
32

72% 8
32

25%

*RNR* 2
4

50% 2
4

50%

other 29973
35964

83% 29657
35964

82%

total 30317
36439

83% 29804
36439

82%

Table 5.6.: Dependency evaluation of 1) the parser output in the limited discontinuous exper-
iment and 2) the parser output in the unchanged context-free experiment against
the limited discontinuous gold standard
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discontinuities would require the inclusion of lexical clues into the parsing model. For

the present model, it thus seems wise to exclude both types from the transformation

(done simply by not considering *ICH* and *EXP* null elements) and content oneself

with invariably local attachment as in the original context-free annotation. The discon-

tinuous parsing experiment was repeated with the so modified training data, and the

evaluation of both the new discontinuous and the unchanged context-free experiment

was repeated with the so modified gold standard. The results are shown in Tables 5.5

and 5.6. While the overall EVALB scores for the discontinuous experiment and the

dependency evaluation of the context-free experiment are affected only marginally, the

discontinuous experiment without *ICH* and *EXP* transformation sees a strong rise

in attachment score for dependencies of the *T* type, a slight decrease for those of the

*T*-PRN type and, again, only marginal overall change.



Chapter 6.

Conclusion and Outlook

This thesis presents first results for large-scale data-driven discontinuous constituent

parsing of English text. To this end, the PLCFRS parsing methodology presented by

Maier and Kallmeyer (2010) has been transferred from parsing German to parsing Eng-

lish. For training and testing, the Wall Street Journal part of the Penn Treebank has

been used after being converted to a format where certain types of non-local depen-

dencies are represented using discontinuous constituents rather than null elements and

coindexation, making them accessible to the data-driven constituent parser. The method

for converting the treebank has been developed and discussed in detail. A detailed anal-

ysis of parsing performance on specific linguistic phenomena involving discontinuities

has been provided.

The results for discontinuous constituent parsing of English are promising. While

the accuracy figures lag behind the state of the art for English, this does not call the

viability of discontinuous constituent parsing into question. When trained on a context-

free treebank, the parser used is at its core a PCFG parser, just like state-of-the-art

context-free parsers (Klein and Manning, 2003b; Petrov et al., 2006). The context-free

parsing experiments conducted show about the same lack in accuracy as the discontin-

uous experiments, reflecting the ample room for improvement left by techniques not yet

implemented, viz. refinements of the algorithms for parsing and for grammar annotation

that are used in state-of-the-art parsing. Since PLCFRS is a generalization of PCFG,

prospects are good that the applicability and effects of such optimizations will continue

to carry over from the context-free to the discontinuous case.

Especially promising in the direction of grammar annotation are category splits.

A small set of them was shown to already have a strong beneficial effect on parsing

accuracy. This could be exploited further by either adding more linguistically motivated
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splits manually in the fashion of Klein and Manning (2003b) or automatically in the

fashion of Ule (2003) or Petrov et al. (2006).

No improvement in accuracy could be elicited using the limited form of Markovization

tried out in this work. However, full Markovization and a range of further parameters

remain to be explored, e.g. making the use of horizontal Markovization depend on the

parent category as successfully done by Kübler (2005) on the German treebank TüBa-

D/Z.

Concerning parsing performance specifically on discontinuous constituents, wh-move-

ment, fronted and circumpositioned quotations are recognized well in the current parsing

model while performance on discontinuous dependency and it-extraposition is poor and

fronting outside of quotations is too rare allow for a substantiated assessment. Specific

problems caused by the presence of discontinuity were not found. However, difficulties

well known in PCFG parsing appear in their old guises in PLCFRS parsing, and ad-

ditionally in some new guises that involve discontinuous constituents. As Petrov et al.

(2006) put it, independence assumptions made by probabilistic grammars tend to be

“too strong in some places (...) and too weak in others”. As a possible example of too

strong independence assumptions involving discontinuous constituents, consider the case

of discontinuous rules from different constructions that sometimes combine to produce

more or less nonsensical analyses because the current grammar model does not capture

connections of certain “mixing rules” with specific “distributing rules” (Section 5.1.7).

As a possible example of too weak independence assumptions (resulting in data sparse-

ness), consider the complete separation of syntactic categories and the rules expanding

them based on fan-out, which could be addressed by factoring rules so that expansions

and their possible separations into two or more ranges are determined separately (Sec-

tion 5.1.4). In the case of discontinuous dependency, the main problem appears to be

massive attachment ambiguity that might be mitigated by making lexical information

available to the parser.

The experiments have shown that parsing with the grammar extracted from the

discontinuous treebank is significantly more complex in terms of items produced, and

therefore more time-consuming, than context-free parsing. An important factor for

parsing complexity is the fan-out of the grammar which is 1 in context-free parsing and

has been 3 in all discontinuous parsing experiments presented. However, a fan-out this

high has been found to be almost exclusively due to the way punctuation is attached

in circumpositioned quotations, suggesting that 2-LCFRS is sufficient for English and

requires only small modifications to the annotation scheme. Further structural simpli-
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fications to the annotation scheme may also prove beneficial since certain linguistically

motivated distinctions appear to complicate the parsing task far more than they are

relevant in subsequent processing, e.g. attaching fronted adjuncts at sentence vs. VP

level (Section 5.1.3) or nesting NP adjuncts in a specific order (Section 5.1.5). Parsing

accuracy could also gain from a harmonization of the annotation scheme with respect

to fine points such as the attachment of quotation marks, as discussed in Section 5.1.1.

A final topic for further work that should be mentioned here concerns the relation

between discontinuous constituent parsing and other methods to the end of including

non-local dependencies in syntactic representation, such as those mentioned in Sec-

tion 1.3. Even discontinuous trees cannot represent all types of non-local dependencies,

thus some additional processing will remain necessary in order to recover e.g. control

relations or attachment to multiple interpretation locations. Further research might be

able to show how to adapt algorithms for doing so from context-free to discontinuous

input trees and whether the additional information encoded in the discontinuous trees

also helps with the recovery of those other dependencies.





Appendix A.

Corrections to the Penn Treebank

annotation

During the development of the algorithm described in Chapter 3, certain annotation

errors and inconsistencies in the Penn Treebank (Release 2, Wallstreet Journal corpus)

showed up by leading to errors in applying the algorithm or in sanity checks carried

out on the transformed treebank. This appendix contains the full list of manual cor-

rections made to the treebank before the final run of the algorithm which produced the

transformed treebank used in the experiments.

Sentence Problematic element Solution

575 * coindexed with root changed it to *T*

2512 *T* without referent removed *T* and placeholder ADVP

5659 *T* coindexed with S coindexed it with lower S

6323 *T* coindexed with SINV coindexed it with lower S

6580 VP embedding quotation reannotated complete VP

7757 * coindexed with root changed it to *T*

11680 missing PRN added it as parent of SINV

15577 *T* coindexed with S coindexed it with lower S

15755 *T* coindexed with SINV coindexed it with lower S

15770 *T* coindexed with SINV coindexed it with lower S

15983 * with wrong index coindexed it with surface subject NP

21763 *ICH* missing referent coindexed it with last SBAR

23986 *T* missing referent coindexed it with WHADVP

26789 missing PRN added it, embedding parenthetical S
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40235 missing PRN and SINV added them, embedding parenthetical VP

40356 missing PRN added it, embedding parenthetical S

41561 *T* coindexed with with SBAR coindexed it with WHADVP

48536 *T* coindexed with top S coindexed it with new topicalized S node

48618 ADVP with *T* attached too high attached it in lowest VP
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