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Chapter 1

Introduction

Imagine you are trying to learn an unknown language—say, Dutch. All
you have is a list of Dutch sentences with their English translations. For
example:

(1) a. Zijleest elke morgen de krant.
b. She reads the newspaper every morning.

Luckily, you can understand English. That is, when you read an English
sentence, you form a semantic interpretation of it in your mind: you
know what the sentence means. So, if you trust the translation, you
already know what Zij leest elke morgen de krant means as well. If you
are a formal semanticist, you might diagram the meaning as follows:

x1 x2 el
female(x1)
newspaper(x2)
= | read(el)
Agent(el, x1)
Theme(el, x2)
in(el, x1)

(2) x1
morning(x1)




2 Chapter 1. Introduction

But in order to learn the language, you have to find out what individual
words mean and how they combine. Only then will you be able to rec-
ognize and interpret them when reading Dutch in the future, gauging
the meaning of texts you are not given translations for.

But which word means what? You could start with the assumption
that Dutch is fairly similar to English, and hypothesize that the words
correspond to each other one-to-one: Zij=She, leest=reads, elke=the, mor-
gen=newspaper, de=every, krant=morning.

However, as you read more sentences, you notice that de is an ex-
tremely frequent word. It is often found in sentences whose English
translations do not contain every. But it tends to co-occur with the. So it
seems more likely that de is in fact the definitive article.

Thus, you change your hypothesis, and now assume the Dutch sen-
tence has a different order from the English one, elke meaning every, mor-
gen meaning morning, and krant meaning newspaper. That seems better,
also because the mapped words now sound more similar to each other,
a strong clue in the case of related languages. You can corroborate your
hypothesis by verifying that krant is frequently found in other sentences
whose translation contains newspaper or a semantically equivalent word
such as paper.

As you study this sentence and others, you will also notice that the
changed word order is a frequent pattern: an adverbial intervenes be-
tween verb and object. The more sentences you study and try to under-
stand, the more words you learn, and the more easily you can follow
Dutch word order.

This is a process by which a dedicated human is conceivably able
to learn to read a language. Can computers learn a language in a simi-
lar way? Let us start with the assumption that a computer already un-
derstands English. This assumption is not as presumptuous today as it
was ten years ago. Great progress has been made in the young field of
semantic parsing, the mapping of natural-language sentences to formal
meaning representations such as the one in the diagram above. Once
a computer has mapped natural-language input to such a formal rep-
resentation, it can use it to draw conclusions and take the appropriate
actions—think of a robot servant that follows your instructions, or of
a program that reads medical papers and finds new cures by using in-
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formation previously reported, but not combined by human scientists.
And that is what we mean by computers “understanding”: taking ap-
propriate actions and producing new insights.

Despite recent successes, semantic parsing remains a very difficult
task, especially when broad coverage of linguistic domains like news-
wire text or everyday speech is required. Existing systems typically
parse only one language, and that is typically English: computers are
monolinguals. Countless person hours have gone into engineering com-
putational grammars and semantically annotating texts to teach com-
puters that one language. We should not start from scratch for other
languages.

Instead, one possibility is to use cross-lingual learning, a family of
methods that train natural-language processing systems with few or no
manually created resources specifically for the target language. Cross-
lingual learning draws on resources for another language and on par-
allel corpora (collections of translated text) to transfer knowledge from
source-language systems to target-language systems—much like the learn-
ing process sketched above. Seeing the considerable cost of manually
creating resources for semantic parsers, computers that learn to “under-
stand” language in this way would be very useful.

1.1 About this Thesis

This thesis deals with the problem of learning a broad-coverage par-
ser cross-lingually. We are particularly interested in finding a method
that assumes little to no available resources (such as grammars or lexi-
cons) for the target language, so that it is applicable to under-resourced
languages. The problem is addressed within the framework of Combi-
natory Categorial Grammar (CCG) as a grammar formalism and Dis-
course Representation Theory (DRT) as a meaning representation lan-
guage. This leads to the following four research questions:

(i) Does CCG have the flexibility required for applying it to diverse
natural languages, meaning representation formalisms and pars-
ing strategies?
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(ii) Broad-coverage semantic parsing requires training data in the form
of text annotated with suitable meaning representations such as
Discourse Representations Structures (DRS). How can the knowl-
edge of humans be used effectively for building such a corpus?

(iif) One type of cross-lingual learning is annotation projection, the pro-
jection of source-language annotations to target-language anno-
tations, followed by training on the target-language data so an-
notated. In the case of CCG derivations, annotation projection
amounts to automatic parallel semantic treebanking:

e Is there an algorithm for doing this?
e Can it deal with translation divergences?

e Does it produce linguistically adequate analyses?

(iv) How can such projected derivations be used to train a broad-coverage
semantic parser?

The thesis is structured as follows.

Part I provides the background: Chapter2]introduces the necessary
background on CCG, and Chapter 3|reviews existing approaches to se-
mantic parsing.

Part II deals with narrow-coverage semantic parsing, i.e., seman-
tic parsing of utterances geared towards specific, concrete tasks to be
performed by the understanding system. We address question (i) in
this setting by applying CCG to a new semantic parsing task dealing
with situated robot commands. Despite being narrow-coverage, the
task is challenging and tests CCG’s flexibility in several ways, includ-
ing unedited language, non-standard meaning representations and in-
terfacing with a spatial planner.

Part Il deals with broad-coverage semantic parsing, i.e., semantic
parsing of text not necessarily geared to any specific task. Chapter[5|ad-
dresses question (ii) by describing and evaluating the annotation scheme
and methodology used in the Groningen Meaning Bank project. Chap-
ter[6|addresses question (iii) by describing and evaluating an algorithm
for projecting CCG derivations across parallel corpora. Chapter [7] ad-
dresses question (iv), developing a cross-lingual semantic parser learner
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based on the projection algorithm and evaluating it on an English-Dutch
parallel dataset.

Part IV concludes with Chapter 8| formulating the answers to the
research questions.

1.2 Publications

Some chapters of this thesis contain material from or are extended ver-
sions of peer-reviewed publications:

Chapter [fis an extended version of Evang and Bos|(2014).

Chapter [5|contains material from Basile, Bos, Evang and Venhuizen
(2012) , Evang and Bos| (2013) and Bos, Basile, Evang, Venhuizen and
Bjerva (2017) .

Chapter is an extended version of Evang and Bos (2016).






Part1

Background






Chapter 2

Combinatory Categorial
Grammar

2.1 Introduction

In this thesis, we are concerned with automatically deriving the mean-
ings of sentences. It is much easier to get a hold on this task if we assume
that the meaning of a sentence follows via a small set of rules from the
meanings of the parts it consists of (its constituents or phrases), and the
meaning of each part in turn follows via these rules from the meanings
of its subparts—ultimately, everything is composed of the meanings of
individual words. This view is known as the principle of compositionality
and, as Janssen| (2012) argues, was first formulated by Carnap) (1947).
We adopt it in this thesis. We will call the formal meaning representa-
tions assigned to words, sentences and other constituents their interpre-
tations.

For specifying the set of rules that govern how word interpretations
are put together into constituent and sentence interpretations, our tool
of choice is Combinatory Categorial Grammar (CCG;[Steedman), 2001).
CCG is unique in that it couples syntax and semantics very tightly. It
keeps stipulations about the syntax to a minimum, notably having a
very flexible notion of constituency. It is this flexibility, together with
a clear, principled approach to deriving interpretations, and a proven

9
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track record as a framework for building robust statistical parsers, that
make CCG appear as a suitable framework for the cross-lingual parsing
work tackled in this thesis. In this chapter, we introduce CCG with a
focus on the aspects especially important for this thesis.

2.2 Interpretations

In CCG, the interpretations of words, sentences and other constituents
are terms of the A-calculus (Church), 1932; Barendregt, (1984, Chapter 2).
The set of A\-terms over an infinite set V' of variables is the least set A
satisfying

1. zeAifz €V,

2. (Az.M) e Aifz € Vand M € A (\-abstraction),

3. (MQN) e Aif M, N € A (function application).

We define a substitution -[x := N] withz € V, N € A as the least
partial function from A to A satisfying

1. z[x:=N]=Nifz €V,
2. (Ax.M)[x:= N] = (A\z.M),

3. (A\y.M)[z := N] = (A\y.M[x := N]) if x # y and y does not occur

in
4. (AQB)[x := N] = (A[x := N]QB[x := N]).

This definition prevents accidental binding of variables in the substi-
tuted expression N by having substitution be undefined for such cases.

The equivalence relation = between terms in A is the least symmetric
and transitive relation from A to A satisfying

!Substitution can be defined more leniently so that only free occurrences of y in N
are disallowed, but this does not change the equivalence relation defined below because
it allows for free renaming of variables.
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l. z=zxifz eV,

2. (Ax.M) = (Ax.N)if M = N,

3. (MQN) = (AQB)if M = Aand N = B,

4. (\x.M) = (\y.M|[z := y]) if y does not occur in M (a-conversion),
5. (Az.M)QN) = M|z := N]| (B-conversion).

For example, the A-terms (a@b), ((Az.(x@b))Qa) and ((Ay.(y@Qb))Qa)
are all equivalent. We will not usually distinguish between equivalent
A-terms, instead speaking about them as if they were the same.

We use the double-bracket notation to refer to the interpretation
of a word, e.g., [Mary] is the interpretation of the word Mary. What
those interpretations look like exactly depends on the semantic formal-
ism one uses. For example, with a simple formalism based on pred-
icate logic, we might have [Mary] = m, [John] = j and [loves] =
(Az.(Ay.((love@y)@Qzx)))—or, written with some syntactic sugar: [loves]
= Az.\y.love(y, x). As the interpretation of the sentence John loves Mary,
we might wish to obtain (([loves]Q[Mary])@Q[John]) = love(j, m).

To derive interpretations for sentences compositionally, we must re-
strict the set of possible constituents and their interpretations. CCG
does this by assigning each word a syntactic category and providing a
number of combinatory rules through which constituents may be derived.

2.3 Syntactic Categories

A syntactic category is either a basic category or a functional category. To
a first approximation, the basic categories are:

e N:noun, e.g., book,
e NP: noun phrase, e.g., a book or Mary,
e PP: prepositional argument, e.g., to John,

e S: sentence, e.g., Mary gave a book to John.
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Mary bought a book
NP: (S\NP)/NP: NP/N: N:
[Mary] [bought] [a] [[book]]

NP:[a] @[[book]]
S\NP: [[boughtﬂ@([[a}]@[[book]T
S: ([bought]Q([a]@[book]))@ [[Maryﬂ

Figure 2.1: CCG derivation diagram of the sentence Mary bought a book.

Many well-known syntactic constituent types—such as determiner,
verb phrase or preposition—do not have basic categories. Instead, they
have functional categories which indicate their potential to combine with
other constituents to form new constituents. Functional categories are
of the form (X/Y') or (X\Y') where X and Y are syntactic categories.
X is called the result category and Y is called the argument category. In-
tuitively, category (X/Y’) on a constituent indicates that the constituent
can combine with a constituent with category Y on its immediate right
to form a new constituent with category X. The first constituent is then
called the functor, the second the argument and the third the result. Sim-
ilarly, category (X'\Y') on a constituent (the functor) indicates that it can
combine with a constituent with category Y on its immediate left (the
argument) to form a new constituent with category X (the result).

For example, an intransitive verb such as walks can combine with a
(subject) noun phrase such as Mary on its left to form a sentence such
as Mary walks, so it has the category (S\NP). A transitive verb such
as bought has the category ((S\NP)/NP), saying that it can first com-
bine with an (object) NP such as a book on its right to form a constituent
with category (S\NP) such as bought a book—which can in turn com-
bine with an NP on its left to form a sentence. In general, CCG verb
categories are designed so that arguments combine in order of decreas-
ing obliqueness. This is motivated by binding theory, for details see
Steedman)| (2001} Section 4.3).
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John sings happily
NP: S\NP:  (S\NP)\(S\NP):
[John] [sings] [happily]
S\NP: <
[happily]|Q[sings]
S: <

([happily]Q[sings]) Q[ John]
Figure 2.2: Derivation with a VP modifier.

A complete analysis—called a derivation in CCG—of a sentence is
shown in Figure Each constituent is drawn as a horizontal line with
its category written underneath, followed by a colon, followed by its in-
terpretation. Here and from now on, we drop outermost parentheses
both on categories and on interpretations, to avoid notational clutter.
Lexical constituents are written at the top, with the corresponding words
above the line. Non-lexical constituents are drawn underneath their chil-
dren, and on the right of the line a symbol is drawn indicating the com-
binatory rule (see below) that licenses the constituent, given its children.

We think of every constituent as having a list of arqument slots, each
associated with a category and a slash direction. For constituents with
basic categories, this is the empty list. For constituents with category
X/Y or XY, itis alist headed by an argument slot associated with /Y
resp. \Y, followed by the elements of the argument slot list a constituent
with category X would have. When a constituent serves as functor in
the application of a binary rule, we say that its first argument slot is
filled in this process, i.e., it no longer appears on the result constituent.
For example, a transitive verb (category (S\NP)/NP) has two NP ar-
gument slots, the first for the object, the second for the subject. After
combination with the object, only the subject argument slot remains on
the result constituent (category S\ NP).

Constituents with categories of the form X/X or X\ X are called
modifiers. They modify the interpretation of a constituent but do not
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change its category, i.e., the categories of argument and result are the
same. Examples of modifiers are attributive adjectives, which modify
nouns, and adverbs, which modity, e.g., verb phrases. An example of
VP modification is given in Figure

2.3.1 Morphosyntactic Features

We have so far presented a simplified set of basic categories: {S, NP,
N, PP}. In actual grammars, often instead of the atomic basic cate-
gory NP complex basic categories such as NP|3s] are used, each with
morphosyntactic features for person, number, gender and so on. This
allows grammars to implement selectional restrictions such as the fact
that a third-person singular verb requires a third-person singular sub-
ject. Not all NP categories need to have all features. A category with
a missing feature is thought of as underspecified, i.e., as having a vari-
able for this feature which can take on any value via unification when a
combinatory rule is applied. For example, a third-person singular verb
might have category (S\NP[3s])/NP. The first argument category, cor-
responding to the direct object, is underspecified for person and num-
ber, so any NP will be able to serve as the object, regardless of its person
and number (cf. Steedman), 2001} Section 3.1).

The NP features appear not to be essential for statistical parsing of
English, and we do not use them in this thesis. However, we do distin-
guish clause types via a single S feature, following statistical parsing
work of [Hockenmaier| (2003a) and |Clark and Curran| (2007). Relevant
clause categories for English are:

e S[dcl]: declarative sentence, e.g., Mary wants to give John a book,
e S[wq]: wh-question, e.g., What are you doing,

e S|q]: yes-no-question, e.g., Are you crazy,

e S[gem|: embedded question, e.g., how many troops have arrived,
e Slem]: embedded declarative, e.g., that you are crazy,

e S|frg]: sentence fragment, e.g., not exactly inevitable,
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John wants to sing happily
NP: (S[dcl]\NP)/(S[to]/NP): (S[to]\NP)/(S[b]/NP): S[B\NP: (S\NP)\(S\NP):
[John] [wants] [to] [sing] [Rappily] o
SH\NP:
[happily]Q[sing]
S[to]\NP:[to] Q([happily] Q[ sing]) >0
S[dcI\NP:[wants|Q([to] @([happily]Q[sing])) 0

Sldcl]: ([wants]|Q([to]| Q([happily]|Q[sing])))Q[John]

Figure 2.3: Derivation illustrating the use of category features: the cat-
egories of wants and to select for specific VP types whereas the modifier
happily is underspecified.

S[for]: small clause headed by for, e.g., for one consultant to describe
it as “clunky”,

S|intj]: interjection, e.g., Wham!,

Slinv]: elliptical inversion, e.g., may the Bush administration in so
may the Bush administration,

S[b]\NP: VP headed by bare infinitive, subjunctive or imperative,
e.g., give John a book,

S[to]\NP: VP headed by to-infinitive, e.g., to give John a book,

S[pss|\NP: VP headed by passive past participle, e.g., given a book
by Mary,

S[pt]\NP: VP headed by active past participle, e.g., given a book to
John,

S[ng]\NP: VP headed by by present participle, e.g., giving a book
to John,

Sladj]\ NP: predicative adjective phrase, e.g., hypnotically grotesque.
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Complementizers and auxiliary verbs as well as adjectives, adverbs
and verbs with clausal complements select for clauses with specific fea-
tures whereas sentence/VP modifiers are typically underspecified for
clause type and can apply to any sentence or any VP. Examples of both
selection and underspecified modification can be seen in Figure

24 Combinatory Rules

How constituents can combine is spelled out by CCG’s combinatory
rules. A combinatory rule applies to one or two adjacent constituents
with particular categories as input and produces an output constituent
whose category and interpretation depend on those of the input con-
stituents. Combinatory rules are stated in the form a: f = 7:h (unary
rules) or a: f B:g = 7:h (binary rules) where «, § are categories of
input constituents, f, g are interpretations of input constituents, v is the
category of the output constituent and £ is its interpretation.

2.4.1 Application

Above, we gave the intuitive meaning of functional categories as being
able to combine with adjacent arguments of the argument category to
yield a result of the result category. The rules of forward application and
backward application implement this meaning:

(1)  Forward application (>°)
(X/)Y):f Yia = X:(fQa)

(2)  Backward application (<°)
Yia (X\Y):f = X:(fQa)

Semantically, the application rules implement function application: if
the functor has interpretation f and the argument has interpretation a,
the constituent resulting from application has interpretation (f@Qa).



2.4. Combinatory Rules 17

X/Y:f Y/Z:g Z:Oa X/Y:f Y/Z:lg Z:a
Y:¢gQa >0 X/Z:)\.r.(f@(g@i)) o
X: fQ(gQa) o X:fQ(gQa)

Figure 2.4: Two semantically equivalent derivations.

2.4.2 Composition

Consider, in the abstract, two adjacent constituents with categories X/Y
and Y/Z. We can tell from the categories that if we have another con-
stituent with category Z to the right of them, we will be able to derive
a constituent with category X, as shown on the left in Figure We
could come up with a category that encodes this prediction: look for Z
on the right, the result is X, i.e.,, X/Z. We may feel entitled to assign
this category to a constituent spanning the constituents with categories
X/Y and Y/Z—if we make sure the interpretation we eventually derive
will be the same. This, too, is easy: the Y/Z constituent is waiting for
a Z constituent with some interpretation—let’s call it z—and when ap-
plied to it would yield the interpretation g@x, which would then be the
argument to f. We can anticipate this process by using A-abstraction,
abstracting over the interpretation x that we will combine with later.
The interpretation for our X/Z constituent is thus: A\z. fQ(gQx).

In fact, CCG has a combinatory rule that allows us to derive this
“non-canonical” constituent, called (harmonic) forward composition (>1).
We say that the filling of the Z argument slot has been delayed. It can now
be filled by combining the X /Z constituent with the Z constituent via
forward application. We obtain a constituent with category X and in-
terpretation (A\z.(f@(g@z)))@a, which is equivalent to f@Q(gQa). Thus,
we obtained the exact same constituent as before via a different deriva-
tion.

This may seem redundant and pointless until one realizes that some
linguistically motivated analyses are only possible when we permit our-
selves to derive such “non-canonical” constituents, for they can be ex-
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Mary bought and might read a  book
NP:  (S[dcl)\NP)/NP: conj: (S[dcl]\NP)/(S[b]\NP): (S[b]\NP)/NP: NP/N: N:
[Mary] [bought] [and] [might] [read] ) [a]l  [book]
> >0

(S[dcl)\NP)/NP: NP:
Az.[might]Q([read] Qz) 0 [a]@[book]

((SIACI\NP)/NP)\((S[ACI\NP)/NP): ~
[and]Q(Az.[might]Q([read]Qx))

(S[dcl]\NP)/ NP:
([and]@Q(Az.[might]|Q([read]Qx)))Q@)[bought]

0
S[dcI\NP:(([and]@(Az.[might]Q([read]Qz)))@Q) [bought])Q([a]Q[book]) >0
S[del]: ((([and]@Q(Az.[might]Q([read]Qz))) @) [bought])Q([a] @[ book])) Q[ Mary]

<0

Figure 2.5: Example of non-constituent coordination. We abbrevi-
ate (((S[dcl]\NP)/NP)\((S[dc]]\NP)/NP))/((S[dcl]\NP)/NP) as conj
here.

plicitly required as arguments by other constituents such as conjunc-
tions or relative pronouns. One example is the coordination of non-
canonical constituents as analyzed in Figure read is a transitive verb
that expects an object on its right, as is bought. might, however, is a VP
modifier that expects a constituent of category S\ NP as argument, with
no open object argument slot. Yet might read is a conjunct in the coor-
dination, a book being the object to both bought and read. Composition
allows for the correct analysis. CCG’s harmonic composition rules are:

(3)  Forward harmonic composition (>1)
(X/Y):f (Y/Z2):g = (X/2):(\z.(fQ(gQx)))

(4)  Backward harmonic composition (<!)
(Y\Z):g (X\Y):f = (X\Z2):(\z.(fQ(g9Qz)))

Pairs of derivations such as those in Figure where the categories of
the words and of the largest constituents are identical and where the lat-
ter necessarily has the same interpretation even if the interpretations of
individual words are not known, are called semantically equivalent (Eis-
ner, [1996). Practically every real-world CCG derivation has multiple
different semantically equivalent but distinct derivations, a characteris-
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was primarily a guitarist

(S[dcl]\NP)/NP: (S\NP)\(S\NP): NP/N: N:
[was] [primarily] [a] [guitarist]
a2

(S[dcl]\NP)/NP: NP:
Az.[primarily] Q([was]Qx) [a] @[ guitarist] .

S[del]\NP:[primarily|Q(Jwas]Q([a] Q[ guitarist])) ~

Figure 2.6: Internal VP modification analyzed using crossed composi-
tion.

tic of CCG that is known as spurious ambiguity.

2.4.3 Crossed Composition

Occasionally we would like to derive a constituent with interpretation
f@(¢g@a) but cannot do so with application and harmonic composition
alone because the constituents with interpretations g and a are not ad-
jacent; they are separated by the one with f. This is the case for exam-
ple when a modifier appears inside the hypothetical constituent that it
modifies, such as the modifier primarily in Figure 2.6/—it is a VP modi-
fier appearing between the verb and the argument it needs to make the
VP complete.

This problem is solved by crossed composition. It is like harmonic
composition, except that the slashes associated with the first argument
slots of the input categories lean different ways:

(5) Forward crossed composition (>)

(X/Y):f (Y\Z):g = (X\2):(\z.(fQ(g9Qx)))
(6) Backward crossed composition (<)

Y/Z):g (X\Y):f = (X/Z):(Az.(fQ(g9Qx)))

This way, the modifier can combine with the verb, delaying the applica-
tion to the object. The resulting constituent is then adjacent to the object
and can combine with it.
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24.4 Generalized Composition

CCG'’s generalized composition rules allow for delaying not just one, but
a number n of arguments. Application and composition rules are then
special cases of generalized composition where n = 0 and n = 1, re-
spectively. Following the notation of Vijay-Shanker and Weir| (1994), we
define generalized composition as follows:

(7)  Generalized forward composition (>")
(X/Y):f (- (YhZ)la--|nZn):g =
(- (X[1Z1)l2- -+ [nZn):
AL1 AT+ Az (fQ- - (((9Qzq)Quxg - - - )Qxy,))
wheren >0, X,Y, Z1, ..., Z, are categories, |1, ..., |n € {/,\}

(8) Generalized backward composition (<™)
(- YhZ)le - [nZn)g (X\Y):f =
(- (XhZ)l2 - [nZn):
AT1 AT - Az (fQ- - (((9Qxq)Qxg - - - )Qxy,))
wheren >0, X,Y, Z1, ..., Z, are categories, |1, ..., |n € {/,\}

Some versions of CCG require |1, ..., |,, to all have the same direction (cf.
Kuhlmann et al., 2015), but we do not require this. Forward composition
with n > 1is called harmonic if |; = / and crossed if |; =\, and vice versa
for backward composition. We will mark crossed rule instances with a
x subscript, e.g., >1 and <!. In practice, there is an upper bound on
n depending on properties of the language. For English it is usually set
asn < 3.

2.4.5 Type Raising

Sometimes a functor needs to combine with an argument but still has
extra argument slots beyond the one corresponding to that argument.
This is the case for example in object relative clauses, as in the book that
Mary bought. Here, there is no object NP on the right of the verb, yet we
wish to combine the transitive verb with category (S\NP)/NP with its
subject NP to the left. The situation is opposite to the one that compo-
sition deals with: now, not the argument, but the functor, has an extra
open argument slot. CCG deals with this by using composition, but
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the book that Mary bought
NP/N: N: (N\N)/(S[dcl]/NP): NP: (S[dcl]\NP)/NP:
[the] [book] [that] [Mary] [bought]
S[del]/(S[dcl]\NP):
Af.fQ[Mary] )
>
Sldcl]/NP:

Az. (([[bought]]@x)@[[Mary]]o)
N\N:[that]@Q(\z. (([[boughtﬂ@x)@[[Mary]F
N:([that]@Q(Ax.(([bought]Qz)Q[Mary]))) @[[bookf
NP:[the]Q(([that]@(Az.(([bought]@x)Q[Mary]))) @[[book]ﬁ

Figure 2.7: Analysis of a relative clause using type raising and compo-
sition.

first turning the argument into the functor and thereby the functor into
the argument. This is done by the unary rules forward type raising (> T)
and backward type raising (< T). An example derivation is shown in
Figure[2.7]

Type raising can be motivated as follows: assume a constituent la-
beled X :a. Now if there is a constituent labeled (7\X): f on its right,
they can combine via backward application into a constituent labeled
T:(fQa). If we relabel the first constituent (7/(T\ X)) : \x.(zQa), we
can derive the exact same constituent, only this time the first constituent
is the functor and the second the argument, and we use forward in-
stead of backward application. A similar argument can be made for the
mirror-image case. Thus, type raising is defined as follows:

(9)  Forward type raising (> T)

Yig = (T/(T\Y)):Mf.(fag)
where Y, T are categories.

(10)  Backward type raising (< T)
Vg = (T\(T/Y)):Af.(fQg)
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where Y, T are categories.

2.4.6 Rule Restrictions

If all existing composition and type-raising rules could be applied with-
out limit, grammars would overgenerate and permit ungrammatical
word orders. One solution to this problem is stipulating language-spe-
cific ad-hoc rule restrictions, stating that certain rules can only apply
to certain input categories, or not at all. For example, Steedman) (2001)
stipulates that in English, forward crossed composition is banned and
backward crossed composition can only apply when the second input
is a clause modifier but not, for example, when it is a noun modifier.
For Dutch, he subjects composition rules to even more complex restric-
tions making reference, e.g., to a syntactic features that distinguish main
clauses from subordinate clauses.

Baldridge (2002); Baldridge and Kruijff| (2003) propose the multi-
modal extension to CCG where language-specific restrictions are placed
in the lexicon rather than in the rules, resulting in truly universal, non-
language-specific rules. Roughly, the mechanism is as follows: each
slash in a functional category carries a feature (mode) saying whether it
can serve as input to harmonic composition, or crossed composition, or
none, or both. This account is perceived as a cleaner solution because
it bundles all language-specific aspects of a grammar in one place: the
lexicon.

Type-raising is typically subjected to certain restrictions preventing
its infinite recursion (Steedman), 2001}, Section 3.5).

In statistical parsing, preventing ungrammatical analyses is less of
a concern than in descriptive grammars, partly because they are con-
cerned with parsing and not generation, partly because even with prop-
erly restricted grammars, the number of theoretically possible analyses
of real sentences is huge and a statistical model is needed for finding
the presumably intended one(s) anyway. The concern here is more to
keep ambiguity manageable for efficient parsing, and this concerns all
rule instances, regardless of grammatical constraints.

Grammars for statistical parsing therefore often take rule restric-
tions to what Baldridge and Kruijff (2003) describe as the “most extreme
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case”: a finite set of permitted rule instances with specific categories,
typically those seen in the training data with a certain minimum fre-
quency. This has been found to speed up parsing at no loss in accu-
racy (Clark and Curran, 2007; Lewis and Steedman, 2014). Although
the grammar is then “only” a context-free one, each rule instance is still
associated with a specific rule schema, retaining semantic interpreta-
tions which can encode long-range dependencies, as Fowler and Penn
(2010) point out.

2.4.7 Type Changing

Phrases with the same internal grammatical structure can perform dif-
ferent functions in a sentence. For example, prepositional phrases can
be used as arguments, but they can also act as modifiers to nouns, verb
phrases or sentences. Adjectives can be predicates or noun modifiers.
Nouns can be noun modifiers in compound nouns, and noun phrases
can be noun phrase modifiers in apposition constructions. Participal
VPs can act as noun modifiers (as reduced relative clauses) and as nouns
(in nominalization). Noun phrases can act as sentence modifiers. Mass
and plural nouns can act as NPs by themselves, without any determiner
to turn them into such. The distinction between internal structure and
external function is known as constituent type vs. constituent function
(Honnibal, 2010, Chapter 3).

There are two major ways of analyzing constituents with potentially
multiple functions in CCG: through lexical ambiguity or through type-
changing rules. With lexical ambiguity, words with the same type can
have multiple lexical entries, one for each possible function. For ex-
ample, prepositions appear with category PP/NP for argument PPs,
(N\N)/NP for noun-modifying PPs, ((S\NP)\(S\NP))/NP for VP-
modifying PPs, and so on. Adjectives have the category S[adj]\ NP for
predicative use, N/N for attributive use, and so on. Nouns, besides N,
also have category N/N, for when they appear as a modifier in a noun-
noun compound. Not only do these words need multiple categories, but
consequently so do their modifiers. For example, an adverb modifying
adjectives needs two categories: (S[adj]\NP)/(S[adj]\ NP) for when the
adjective is predicative, (N/N)/(IN/N) for when it is attributive. Sim-
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ilarly, to allow arbitrarily branching noun-noun compounds, infinitely
many noun categories N, N/N, (N/N)/(N/N), (N/N)/(N/N))/((N/
N)/(N/N))... are needed. The result of this proliferation of modifier
categories is a large lexicon that poorly captures the generalizations ap-
plying to constituents with the same type.

Type-changing rules, on the other hand, allow a constituent type to
have a single category, regardless of its function. Once all modifiers
have applied, a type-changing rule can turn the category of the con-
stituent into the required one. Each type-changing rule needs a dis-
tinct interpretation (Bos et al., 2004), which can often be given in terms
of the interpretations of function words. For example, type-changing
rules dealing with reduced relatives can be interpreted like a relative
pronoun followed by a passive auxiliary, and the type-changing rule
turning a bare noun into a noun phrase has the same semantic effect as
the indefinite article:

(11)  Type changing (*)
Sng|\NP:f = N\N:[that]Q([are]Qf)
N:f = NP:[d]af

An example of a derivation with type changing is given in Figure

The CCGbank flavor of CCG (Hockenmaier and Steedman|, 2007)),
which we adopt in this thesis, uses a mixed approach. It treats prepo-
sitional phrases, adjectives, compound nouns and apposition through
lexical ambiguity, with some compromises made to keep the lexicon fi-
nite and lexical ambiguity manageable. For example, compound nouns
are always analyzed as right-branching, even where this is semantically
inadequate. On the other hand, reduced relative clauses, nominaliza-
tion and bare NPs are handled through type changing. This provides
a reasonable trade-off between category proliferation and overgenera-
tion. Honnibal| (2010) presents an alternative, unified approach using
hat categories: complex categories that capture both constituent type and
constituent function. Statistical parsing experiments with hat categories
proved successful, but the approach currently lacks the support of ma-
ture tools and resources.
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signboards advertising imported cigarettes
N: (Smg]\NP)/NP: N/N: N:
[signboards] [advertising] [imported] [cigarettes]
0
N: -
[imported] Q[ cigarettes]
*
NP:
[a]@([imported] Q[ cigarettes]) o
N: =
[advertising]|Q([a]@([imported]|Q[cigarettes]))
*
N\N:
[[that]]@([[are]]@([[advertismg]]@([[a]]@([[imported]]@[[cigarettes]])))0)
<
N:
[signboards|Q([that]Q([are] Q([advertising]Q([a] Q([imported] Q[ cigarettes])))))
NP:

[a]@Q([signboards]Q([that]Q([are]Q([advertising]Q([a] Q([imported] @[ cigarettes]))))))

Figure 2.8: Derivation using N — NP and N — N\N type-changing
rules.

2.5 Grammars and Derivations

Let us now make explicit what is a valid CCG derivation. We formally
define a CCG as a triple (L, U, B) where U is a set of unary rule in-
stances, B is a set of binary rule instances and L is a lexicon, i.e., a set
of lexical entries of the form w := C': I, associating words with possible
categories and interpretations. U and B may be infinite, containing all
the rule instances permitted by the schemas, possibly limited by rule
restrictions, or they may be finite and contain only a fixed set of rule
instances, as is common in statistical parsing.

For example the minimal CCG needed for the derivation in Fig-
ure[2.3]is



26 Chapter 2. Combinatory Categorial Grammar

G = ({John:= NP:[John],
wants := (S[dcl]\NP)/(S[to]\NP): [wants],
to := (S[to]\NP)/(S[b]\NP):[sing],
sing := S[b]\NP:[sing],
happily := (S\NP)\(S\NP):[happily]},
0,
{S[b]\NP:a (S\NP)\(S\NP):f = S[b]\NP: fQa,
(S[to]\NP)/(S[b]\NP):f S[b]\NP:a = S[to]\NP: fQa,
(S[dc]]\NP)/(S[to]\NP): f S[to]\NP:a = S[dcl]\NP: fQa,
NP:a S[dc]\NP: f = S[dcl]: fQa})

A valid derivation of a linguistic expression w under the CCG is then
defined as a directed rooted tree where vertices are constituents, such
that

1. each constituent is labeled with a tuple (I, r,C,I) where (l,r) is
called the span of the constituent, C is its category and [ its inter-
pretation,

2. for each word with position i, there is exactly one leaf in the deriva-
tion with span (7, i), and there are no other leaves,

3. for every leaf labeled (i,,C, I) where w; is the i-th word in w,
W; = C:Ie L,

4. for every internal vertex labeled (I, r, C, I), it has either

e one child, which is labeled (I,r,Cy, I;) such that C;: [; =
C:I1eU,or

e two children, which are labeled (I, m, C1, I1) and (m, r, Ca, I2),
respectively, and C:1; Cy:Io = C:I € B.

A derivation can contain several occurrences of the same category.
For the projection operations we define in Chapter [} it will be useful
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to have a notion of which occurrences are necessarily identical because
their identity is required by the combinatory rules used. We will call
those necessarily identical categories structure-shared. For example, in
Figure[2.2] the modifier happily has the category (S\NP)\(S\NP), with
two occurrences of the category S\ NP. By backward application, the
first occurrence is structure-shared with the category of sings, and the
second one with the category of the result constituent sings happily. For-
mally, structure-sharing in a derivation is the least symmetric and tran-
sitive relation such that two occurrences of the same (sub)category any-
where in the derivation are in this relation if they are bound by the same
variable of a combinatory rule in condition 4 above.

2.6 CCG as a Formalism for Statistical Parsing

Automatic Natural Language Understanding (NLU) is one of the holy
grails of Artificial Intelligence. Syntactic parsing has long been seen as
an important prerequisite to NLU and consequently is one of the most
intensely studied problems in the field. However, there is no consensus
on how exactly the output of syntactic parsing should help with NLU.
The output is typically a phrase-structure tree with nodes labeled ac-
cording to constituent type, or a dependency tree with words for ver-
tices and labeled edges. For NLU, we would expect logical formulas that
can be interpreted according to some model of the world. Predicate-
argument relations, at least local ones, can typically be read off parser
output with relative ease, but they only give an incomplete approxi-
mation to the meaning, missing aspects such as negation, disjunction,
quantification or projection.

Most answers to this problem take a compositional approach. They
define functions that recursively interpret each node of a phrase-struc-
ture or dependency tree, i.e., map it to a formula, by taking the interpre-
tations of its children as input. Examples of such approaches outside of
CCG are Copestake and Flickinger (2000) within the HPSG grammar
formalism and Hautli and King| (2009) within LFG. Approaches differ,
among other things, in how many syntactic rules there are. This has
consequences for how many possible local tree configurations the inter-



28 Chapter 2. Combinatory Categorial Grammar

pretation function has to be defined for, and how strongly this definition
depends on the natural language being analyzed.

CCG takes a strongly lexicalized approach here: rules are few and
very general, and therefore many interpretation decisions are pushed
to the lexical level. For example, information about the syntactic va-
lency of a lexical item and the semantic roles it assign to its arguments
are associated with the lexical item itself. At the same time, the way
CCG handles non-local dependencies still allows the lexicon to be very
compact—for example, the transitive verb bought has the exact same
category and interpretation no matter whether it appears in a normal
clause as in Figure as a conjunct as in Figure [2.5/or in an object rel-
ative clause as in Figure

This simplicity of CCG’s approach to compositional semantic inter-
pretation made it an attractive formalism for the output by statistical
parsers. Early work on such parsers (Villavicencio} 1997; Doran and
Srinivas, 2000) relied on existing hand-written grammars for other for-
malisms and (semi)automatically translated them to CCG lexicons. As
is typically the case with hand-written grammars, these were not ro-
bust, i.e., they lacked “the ability to parse real world text with signifi-
cant speed, accuracy, and coverage” (Hockenmaier et al.,|2000). As with
parsers for other formalisms, robustness was achieved by training sta-
tistical models on large amounts of real world text, annotated with gold-
standard parses. The statistical information can then be used to auto-
matically choose the presumably correct parse among the exponentially
many possible ones.

The first such statistical CCG parser was presented in Hockenmaier
et al. (2000), although not rigorously evaluated. It made use of an al-
gorithm that converts phrase-structure trees from the 1-million-word
Penn Treebank corpus (Marcus et al., 1993) to equivalent CCG deriva-
tions for training. The resulting dataset was later released as CCGbank
(Hockenmaier and Steedman, [2007)) and served as training corpus for a
series of further work on CCG parsing. Borrowing techniques that had
been shown to work well for conventional phrase-structure and depen-
dency parsing, it gradually managed to catch up with them in terms
of accuracy, while outputting interpretable CCG derivations. All these
parsers focus on syntax, leaving interpretation to external components.
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Clark et al.|(2002) use a (deficient) probabilistic model that factors
the probability of a sentence into the probability of the lexical category
sequence and the set of dependencies—roughly speaking, the pairs of
argument slots and the heads of the constituents filling them. By model-
ing the probabilities of dependency structures rather than derivations,
they avoid spreading the probability mass too thinly among semanti-
cally equivalent derivations, instead modeling all semantically equiva-
lent derivations as the same event.

Hockenmaier and Steedman/ (2002); Hockenmaier| (2003a,b)) define
a variety of generative, PCFG-like models for CCG derivations. Here,
spurious ambiguity is dealt with by training exclusively on derivations
that are in normal form (Eisner,|[1996), i.e., that use composition and type-
raising only when necessary. In this way, probability mass is concen-
trated on normal-form derivations and pulled from non-normal-form
semantically equivalent derivations.

Clark and Curran! (2004, 2007)) train a discriminative model, result-
ing in the first CCG parser to achieve state-of-the-art results in terms of
dependency recovery. An important ingredient here, as for Clark et al.
(2002), is the supertagger component, which finds the most likely cate-
gory sequences independently of further constituents, thereby cutting
down the search space for the parser and dramatically reducing space
and time requirements for training and decoding. Another important
ingredient is a large number of features included in a log-linear model.

Fowler and Penn| (2010) point out that state-of-the-art CCG parsers
are in fact context-free, and that this can be exploited by straightfor-
wardly combining them with techniques independently developed to
improve the accuracy of context-free parsers. They do this by applying
the unsupervised grammar refinement approach developed for context-
free parsers by |Petrov and Klein|(2007), and show that this can improve
parsing accuracy.

Auli and Lopez (2011) present further improvements achieved by
using task-specific loss functions instead of maximizing log-likelihood,
and incorporating supertagging features into the parsing model.

Zhang and Clark| (2011) present the first transition-based CCG par-
ser, a shift-reduce parser with a simple perceptron model and beam
search. It models (normal-form) derivations in terms of a series of steps
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to build them, where the words are processed incrementally from left
to right. This parser outperforms some of the best previous chart-based
ones while relying less on the supertagger component, in that beam
search enables it to take more candidate categories for each token into
account. Xu et al.| (2014) improve upon this model by modeling depen-
dencies instead of derivations, treating derivations as latent. /Ambati
et al.| (2015) build upon it to create a strictly incremental CCG parser
by adding additional actions allowing new material to combine with
constituents that have already been reduced.

Lewis and Steedman|(2014) present a model that fully reduces CCG
parsing to supertagging: it only models the probability of the lexical cat-
egory sequence, and the parse with the best such sequence is found de-
terministically using an A* algorithm. The model is simpler and faster
than previous chart-based ones, and accuracy is very close to the best
reported previous results.

Finally, two recent papers report improved results using neural net-
works: Xu et al. (2016) combine a shift-reduce CCG parser with a Recur-
rent Neural Network (RNN) for making transition decisions and task-
specific loss similar to/Auli and Lopez (2011). Lewis et al.|(2016) use the
A* parser of |Lewis and Steedman, (2014) together with a Long Short-
term Memory (LSTM) with semi-supervised training.



Chapter 3

Semantic Parsing

3.1 Introduction

In a broad sense, a semantic parser is any system that takes natural-
language (NL) utterances as input and outputs formal representations
of their meaning or intent (meaning representations, MRs), expressed
in some meaning representation language (MRL). Such systems have
been around since the 1970s at the latest, see, e.g., Erman (1977) for an
early collection of articles or|Allen! (1994) for a more recent monograph.
Traditionally, they relied on semantic grammars manually engineered for
specific domains. Such grammars require new manual engineering ef-
fort for each new domain and tend to be not very robust in the face of
the enormous variability of natural language.

Since the 1990s, there has been work on automatizing the construc-
tion of semantic parsers using machine learning, with the aim of mak-
ing them more robust and more easily adaptable to new domains. Since
then, the term semantic parsing is usually used in a narrower sense, refer-
ring to such statistical systems. In this chapter, we review the work that
shaped the field of semantic parsing in this narrower sense. Specifically,
we limit the scope to work on semantic parsers meeting the following
three criteria:

1. The system is trained, using machine learning techniques, on train-
ing examples. Each training example contains one NL utterance
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(e.g., a phrase, a sentence or even a longer text). The reason for
this focus on machine learning methods rather than rule-based
methods is that our goal in this thesis is to develop methods for
cross-lingual semantic parsing that do not require rule writing,
and are looking to build on existing machine learning methods
for this purpose.

2. If the training examples contain MRs, then those MRs are not an-
chored to the NL utterances. That is, they do not contain explicit
information on which parts of the MRs correspond to which sub-
strings of the NL utterance. This allows the MRs a greater degree
of abstraction from lexical and syntactic particulars and enables
cheaper methods of annotation, but makes the learning task more
challenging. Thus, we exclude, e.g., methods relying on parse
trees with semantically augmented labels.

3. The method is, at least in principle, able to handle recursive struc-
tures, both in the NL utterances and in the MRs. Methods that are
not are more aptly described as classification, slot filling, entity
linking or relation extraction methods than as semantic parsing
methods.

3.2 Early Work

The earliest work on learning semantic parsers was driven by the goal to
create natural-language interfaces to database-backed expert systems.
Earlier methods to this end had used hand-crafted grammars specific to
the respective domain. The desire to avoid hand-crafting and automat-
ically train systems from examples instead motivated a move to more
data-driven methods. Much early work focused on the ATIS datasets
released as part of a series of challenges organized by ARPA (Price}1990;
Bates et al., [1990). These datasets contain a database of flight informa-
tion, and exchanges between users and expert systems, where each user
request is annotated with an appropriate database query to show the re-
quested information. An example, adapted from Papineni et al.| (1997):
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(1) a. What are the least expensive flights from Baltimore to Seat-
tle?
b.  LIST FLIGHTS CHEAPEST FROM:CITY BALTIMORE TO:CITY SEATTLE

Part of the challenge was to build systems automatically constructing
the MRL queries given the NL inputs. Early machine learning methods
tackling it did not yet meet our criteria for being called “semantic pars-
ing” because they either required anchored MRs (Pieraccini et al., 1992;
Miller et al| 1994) or were incapable of handling recursive structures
(Kuhn and de Mori, [1995; Papineni et al, [1997). Recursive structures
are not actually required for the task because ATIS utterances are rep-
resentable by a single frame with slot fillers that are variable in number
but flat in structure. [He and Young (2003, 2005, |2006) developed a sys-
tem based on probabilistic push-down automata which does not have
these limitations. However, although their system is capable of repre-
senting recursive structures and outperforms systems that are not, they
still do not test their system on data with MRs complex enough to actu-
ally require recursive structures.

An important step was the creation of the GEoQuEry corpus (Zelle
and Mooney, 1996). This is a dataset of NL queries to a database of
United States geographical data, paired with appropriate database que-
ries in a purpose-built MRL. Compared to earlier resources, this one
requires quite sophisticated understanding of the hierarchical nature of
both NL and MRL expressions, as evidenced, e.g., by recursively nested
entity descriptions or “meta-predicates” to compute aggregate values:

(2) a. whatis the capital of the state that borders the state that bor-
ders texas
b. (answer (capital (loc_2 (state (next_to_2 (state
(next_to_2 (stateid texas:e))))))))

(3) a. whatis the capital of the state with the highest point
b. (answer (capital (loc_2 (state (loc_1 (highest
(place all:e)))))))

Zelle and Mooney| (1996); Tang and Mooney| (2001) use a shift-reduce
parser to translate NL queries directly into MRL queries. Ambigui-
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ties are resolved by rules for choosing parser actions, learned using
Inductive Logic Programming. The lexicon for this parser, i.e., word-
predicate associations, must be given to the system. This is done man-
ually in their experiments. An automatic acquisition method that can
be combined with their systems is presented in Thompson and Mooney
(2003). Tang and Mooney (2001) also evaluate their method on the new
Joss dataset, consisting on job postings from a newsgroup together with
formal representations.

Another benchmark dataset for semantic parsing is introduced in
Kate et al. (2005): the CLANG corpus of NL instructions to robotic soc-
cer players in if-then-form, paired with corresponding expressions in a
purpose-built MRL. In the following years, the semantic parsing task
for both datasets is attacked with a variety of methods, and accuracy is
gradually improved.

Kate et al.|(2005) present a system that learns to apply a sequence of
transformation rules to either a natural-language string or its externally
generated syntactic parse tree to transform it into an appropriate MR.
The set of rules to use is determined by an iterative procedure trying to
cover the training data as accurately as possible. A lexicon is thereby
acquired automatically.

The system of Kate and Mooney| (2006) learns a probabilistic gram-
mar for the MRL, based on Support Vector Machine classifiers for each
production. Terminals are associated with contiguous, not mutually
overlapping substrings of the NL expressions and the order of daugh-
ters in the parse tree can be permuted to accommodate differing orders
between NL and MRL. Ge and Mooney| (2005, 2006) and Nguyen et al.
(2006) present related approaches making use of trees that describe both
the NL and the MRL expressions. The approach however relies on an-
chored MRs in training.

Wong and Mooney| (2006, 2007) also use a formalism describing NL
and MRL synchronously, but overcome the need for manual syntactic
annotation by using word alignment techniques developed for machine
translation. They align NL words to MRL productions, induce a Syn-
chronous Context-free Grammar (SCFG) translating between NL and
MRL expressions and train a probabilistic model for parsing with it. In
addition to the previous datasets, they also report results for a multilin-
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gual subset of GEoQUERY where the NL utterances have been translated
to Japanese, Spanish and Turkish.

Lu et al|(2008) define a generative model of NL-MRL expression
pairs with hybrid trees as latent variables. Hybrid trees are similar to
SCFG derivations but are “horizontally Markovized”. This makes them
more robust in the face of unseen productions required for parsing the
test data.

Ge and Mooney|(2009) combine an existing syntactic parser, seman-
tic lexicon acquisition through word alignments and a feature-based
disambiguation model to derive MRs. [Jones et al.| (2012) learn syn-
chronous models of NL and MRL using Bayesian Tree Transducers. Fi-
nally, Andreas et al. (2013) show that standard machine translation tech-
niques (a phrase-based model and a hierarchical model) can be applied
to the task of semantic parsing, treating MRs as target-language utter-
ances, with competitive accuracy.

The first CCG-based approaches to semantic parsing were devel-
oped in parallel. Due to their lasting impact on the field and their im-
portance for this thesis, we describe them separately in the next section.

3.3 Early CCG-based Methods

Zettlemoyer and Collins| (2005) present the first CCG-based approach
to learning semantic parsers. Candidate lexical entries are created by a
fixed number of templates, in which placeholders are filled with (multi)-
words and non-logical symbols from training examples. The templates
encode some grammatical expert knowledge on which categories are
needed for the given natural language, and which shapes the interpre-
tations for each category can take. On the other hand, they do not en-
code any prior knowledge on possible word-template or word-symbol
associations, so apart from good entries as in [(4)} many bad entries as
in|[(5)|are generated (examples from their paper):

(4) a. Utah:= NP:utah
b. Idaho := NP:idaho
c. borders := (S\NP)/NP: x.(\y.next_to(y,x))
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(5) a. Dborders:= NP:idaho
b. borders Utah := (S\NP)/NP:\x.(\y.next_to(y, ))

A learning procedure then jointly attempts to reduce the lexicon to the
good entries and learn parameters for a log-linear model, estimated us-
ing stochastic gradient descent, that discriminates between more and
less likely derivations for an NL utterance. Additional expert knowl-
edge is added in the form of an initialization of the model so that known
good lexical entries for proper names start out with higher-valued pa-
rameters. Learning alternates between updating the lexicon so that it
only contains the lexical entries needed for the currently highest-scoring
derivations, and re-estimating the parameters on the training data us-
ing the updated lexicon, treating the derivations as hidden variables.
At the time, the method achieved the highest precision and comparable
recall to the previous state of the art on the GEoQuEry and Joss data.

Zettlemoyer and Collins|(2007) replace the batch learning algorithm
with an online learning algorithm that uses simple perceptron updates
instead of Stochastic Gradient Descent. One training example is con-
sidered at a time, and both the lexicon and the parameters are updated
after each example. Additionally, they introduce a number of type-
changing rules (cf. Section designed to deal with spontaneous,
unedited language. For example, “role-hypothesizing” rules can turn
the category and interpretation of a noun phrase like Boston into that of
a prepositional phrase like from Boston even if the preposition is miss-
ing. Finally, they employ a two-pass parsing strategy where the parser
can skip certain words if no parse is found otherwise. With these inno-
vations, their parser set a new state of the art on the ATIS data, which
have simpler MRs but less controlled NL utterances and are therefore
harder to parse than GEOQUERY.

Kwiatkowksi et al. (2010) present another CCG-based approach mo-
tivated by the desire to do away with the manually written templates
which are specific both to the natural language to parse and to the MRL
to parse into. They do this by turning the above approach on its head:
instead of generating candidate lexical entries and learning by trying to
build derivations with the correct interpretations, they start by generat-
ing a single lexical entry x := S:z for every training example, where x
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is the entire sentence and z the associated MR. An online learning algo-
rithm then iteratively makes the lexicon more general and jointly learns
parameters for a log-linear parsing model. At each step, the algorithm
finds the best derivation for a training example according to the current
model, then considers a number of variations of this derivation, each
variation making a single change: either some non-lexical constituent is
replaced by a single multiword constituent with the same category and
interpretation, or some lexical constituent H spanning more than one
word is split into two constituents /' and G. In the latter case, the cate-
gories and interpretations of /' and G are chosen so that they can com-
bine into H via a combinatory rule, subject to some constraints that limit
the splitting possibilities to a finite and polynomial number. The varia-
tion resulting in the greatest increase of parse probability according to
the current model is chosen, and the corresponding new lexical entries
are added to the lexicon. A stochastic gradient update is performed for
the training example, and the algorithm moves on the next one. A two-
pass parsing strategy similar to that of Zettlemoyer and Collins (2007)
is employed. Again, prior knowledge about proper names is given to
the system in the form of lexical parameter initializations. Competitive
results are reported for GEoQuUERy, on the full set with English as NL as
well as on the subset with Japanese, Spanish and Turkish translations.

Kwiatkowski et al.|(2011) extend the approach by learning a factored
lexicon. Thatis, instead of storing complete lexical entries, lexemes (pairs
of (multi)words and lists of non-logical symbols) are stored separately
from lexical templates (functions that map lists of non-logical symbols to
lexical interpretations containing these symbols). This way, the system
can learn more from less data by exploiting systematic variation in word
usage. For example, having acquired the lexical entries in[(6)} the parser
can directly use the one in|(7), despite never having explicitly added it
to the lexicon, by using the lexeme from and the template from

(examples adapted from their paper):

(6) a. flight:= N:\z.flight(x)
b. fare:= N/(S\NP):\f.\zx.cost(x) A f(x)

(7)  flight := N/(S\NP):\f.Xz.flight(z) A f(x)
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The algorithm is also extended with a step that can produce lexical tem-
plates “with content”. When instantiated with a lexeme, these tem-
plates introduce additional non-logical symbols regardless of the lex-
eme. Such templates play the same role as the special type-changing
rules of Zettlemoyer and Collins| (2007), allowing, e.g., to interpret the
noun phrase Boston like the prepositional phrase from Boston. They are,
however, not manually specified, but learned from the training data us-
ing certain heuristics. They report highly competitive results on the
Geoquery dataset and also successfully apply their approach to the ATIS
dataset.

Despite approaching the generation of lexical entries “from oppo-
site ends”, the approaches of Zettlemoyer and Collins| (2005, [2007) on
one hand and [Kwiatkowksi et al.| (2010); Kwiatkowski et al.| (2011)) on
the other hand are actually quite similar: both acquire a CCG lexicon
and a log-linear model scoring derivations by learning from NL utter-
ances paired with MRs, treating CCG derivations as hidden variables.
In fact, both approaches have been formulated within a single algorith-
mic framework and implemented withing a single software framework
(Artzi and Zettlemoyer, 2013a).

3.4 Context-dependent and Situated Semantic
Parsing

A given NL utterance may not have the same MR every time it is en-
countered. Its correct interpretation may depend on additional infor-
mation available to the system. This additional information may be a
model of the current state of the world which may change after each
utterance as a result of the system taking actions based on the derived
MR. In this case the semantic parsing task is called situated. It may also
depend on the preceding discourse, i.e. previously encountered NL ut-
terances and their interpretation. In this case, the semantic parsing task
is called context-dependent. An example of a context-dependent seman-
tic parsing task is the interpretation of user follow-up requests within
human-machine interactions in the ATIS dataset. Here is an example
(from Zettlemoyer and Collins|(2009)) of an initial request and a follow-



3.5. Alternative Forms of Supervision 39

up request, each annotated with the correct MR (a database query writ-
ten in A-form, selecting a list of flights to show). The interpretation of
the follow-up request clearly depends on the preceding dialog (which
forms the context in this case), as its MR contains some material from
the initial request:

(8)  List flights to Boston on Friday night.
Az.flight(x) A to(x, bos) A day(x, fri) A during(x, night)
Show me the flights after 3pm.
Az.flight(x) A to(x, bos) A day(x, fri) A depart(x) > 1500

Zettlemoyer and Collins (2009) present a system for this task that parses
NL utterances into underspecified, context-independent MRs and then
uses a learned weighted linear model to choose among the various pos-
sibilities defined by the context of expanding the underspecified MRs
to full MRs. In|Vlachos and Clark!(2014)), a similar dataset and imitation
learner for semantic parsing is presented.

In these systems for context-dependent semantic parsing, the parser
has access to the full MRs during training. In situated semantic parsing,
MRs are typically not provided for training, and the learner has to figure
them out via interaction with the model of the world. We will encounter
such approaches in the following section.

3.5 Alternative Forms of Supervision

With semantic parsers achieving high accuracies on the ATIS, GEoQUERY
and CLaNG datasets, much subsequent work focused on learning se-
mantic parsers more cheaply, i.e., with less explicit supervision. While
existing methods did not require anchored MRs, they still required each
training NL utterance to be annotated with a full MR in the target MRL,
something that still takes considerable expert knowledge and effort to
do. Learning algorithms powerful enough to learn as much from less
explicit annotation were desired.
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3.5.1 Ambiguous Supervision

Often, the context in which an NL utterance occurs provides clues as to
what it might mean. For some applications, the context is informative
enough to automatically enumerate a small set of all possible alternative
MREs, relieving humans of the annotation burden at the cost of a certain
remaining ambiguity. A semantic parser can then be learned from the
alternatives, trying to filter out the wrong MRs as noise. A number
of approaches tackles this problem with expectation-maximization-like
algorithms, i.e., by cycling for a number of iterations between two steps:
1) finding the best correct parses according to the current model and 2)
re-estimating the model parameters accordingly.

Kate and Mooney| (2007) extend the learning algorithm of Kate and
Mooney| (2006) to this end. After some rule-based pruning of the am-
biguous training data, they first treat all remaining alternatives for a
training example as correct and weigh them uniformly for training the
SVM-based model. In later iterations, MRs with non-optimal parsing
scores for each training example are dropped. They evaluate their ap-
proach on two datasets with artificially created ambiguity, in one case
randomly and in one case trying to approximate the type of ambiguity
that a young child would experience when confronted with utterances
in a real-life context. Chen and Mooney| (2008) present a similar ex-
tension to the algorithm of Wong and Mooney| (2007) and apply both
extended algorithms to a sportscasting dataset where the ambiguity is
not artificially generated, but stems from the fact that a human comment
may refer to any of a number of recent events in the game.

Kim and Mooney| (2010) present a probabilistic generative model,
based on that in |[Lu et al.| (2008), which not only produces semantic
parses but also segments the stream of NL utterances and discards ir-
relevant ones. It is learned from the same type of supervision as be-
fore, without explicit segmentation or marking of irrelevant utterances
in the training data. Borschinger et al. (2011)) present a similar approach
based on a joint representation of NL and MR structures in a Probabilis-
tic Context-free Grammar (PCFG).
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3.5.2 Highly Ambiguous Supervision

We speak of highly ambiguous supervision if the number of possible
MRs for a given NL utterance is in general too large to explicitly enu-
merate and/or to tackle with the above methods. This is the case for ex-
ample when training systems to parse NL navigation instructions into
MRL action plans and using the paths taken by humans following the
same instructions as supervision signal. The number of possible action
plans consistent with a given observation is exponential in the length
of the path.

In the task considered by [Matuszek et al. (2010), this is the case be-
cause maps may be incorrectly labeled, hence each landmark reference
in an action plan may be incorrect. They solve it by heuristically seg-
menting NL instruction sequences, parsing the segments with the sys-
tem of Wong and Mooney|(2006) and revising parsing and map labeling
decisions when otherwise unable to execute the action plan.

In|Chen and Mooney|(2011); Chen|(2012), the exponential ambiguity
in supervision stems from the fact that action plans may or may not
contain landmark references at each turn. They tackle the problem by
using a separate lexical alignment step to choose the action plan most
likely to correspond to the given instruction sequence before training
the parser. Since the alignment step sometimes makes mistakes, they
choose a semantic parser learning algorithm known to be particularly
robust to noise, viz. that of Kate and Mooney| (2006). Kim and Mooney
(2012) combine the lexical alignment step of Chen and Mooney (2011)
with the unsupervised PCFG learning approach of Borschinger et al.
(2011) to solve the same problem.

3.5.3 Learning from Exact Binary Feedback

The next degree of reduced supervision occurs when the system does
not have access to any example MRs and can only check whether a given
MR leads to the desired effect when executed. That is, training examples
contain an NL utterance, some state of the world and a validation function
that takes an MR and the state and returns true or false depending on
whether executing the MR on the state leads to the correct answer. The
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learner must essentially proceed by trial and error, hypothesizing full
MRs and checking correctness via the validation function.

For example, |Clarke et al.| (2010) train a parser for the GEOQUERY
domain without access to the MR annotation, only to the geography
database and the answer expected when querying the database with the
correct MR. The MR and alignment of its constituents to NL substrings
is modeled as a latent variable. |[Liang et al.[(2011) present a similar sys-
tem, using a different, dependency-tree-like MRL for latent modeling
whose structure makes its easier to align to NL utterances. This system
achieved higher accuracies at the time than even the best more strongly
supervised systems, also on the Joss domain, albeit using a manually
crafted seed lexicon.

Goldwasser and Roth| (2011) present a system that learns to parse
NL descriptions of the rules of a card game into Horn clauses which
can determine whether a given move is legal or not. Their validation
function applies the hypothesized Horn clause to a small number of
positive and negative examples of valid moves and checks whether it
permits them or not. They show that the system is able to generalize to
both unseen game states and to unseen instructions.

Artzi and Zettlemoyer|(2013b) tackle the navigation task previously
addressed by |(Chen and Mooney| (2011);|Chen| (2012); Kim and Mooney
(2012), experimenting with different validation functions: one which
gives feedback after each step in a sequence of navigation instructions,
and one that only validates the final position of the navigation agent.
This system is also an instance of a situated semantic parser, taking en-
vironment cues into account for making parsing decisions such as word
sense disambiguation.

3.5.4 Learning from Approximate and Graded Feedback

In some tasks, not even certain information on whether a given MR for
a given training example leads to the correct result when executed is
available. Sometimes the learner can then draw on heuristic and /or ap-
proximate reward functions that may sometimes make mistakes but on
the whole still provide feedback valuable enough for successful learn-

ing.
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For example, Branavan et al| (2010) present a system that parses
high-level instructions to Windows users (“open control panel”) into
low-level command sequences (“left-click Start, left-click Settings, left-
click Control Panel”). The reward function approximates correctness
by a simple heuristic criterion: every NL sentence refers to at least one
command and has words in common with the label of the environment
object the command refers to, e.g., the “Start” button.

Artzi and Zettlemoyer| (2011) generalize the framework of Zettle-
moyer and Collins| (2005, [2007) using a loss-sensitive perceptron algo-
rithm which allows for custom reward functions (here: loss functions)
returning real-valued measures of MR “correctness”. They apply it to
the scenario where a dialog system did not understand the user’s initial
request and so followed it up with a series of clarification questions and
confirmation statements. The log of this further dialog is then used to
supervise learning to parse the initial request via a custom loss function.

3.5.5 Unsupervised Learning

A special case is the unsupervised learner of (Goldwasser et al. (2011),
which trains a GEoQuUERy parser with the objective of optimizing the
overall confidence of the model over all (unlabeled) training examples.
They start with the observation that certain repeating patterns in the
parses predicted by a model are an indication of high model quality be-
cause they typically capture real regularities in the data. They estimate
confidence by a number of measures capturing such patterns.

3.6 Scaling Semantic Parsers to Larger
Vocabularies Using Two-stage Methods

One thing most of the semantic parsing methods mentioned above have
in common is that they learn to interpret words and syntactic construc-
tions from a single set of training examples. This makes sense for small
domains like GEOQUERY, where both the number of syntactic construc-
tions and the number of distinct non-logical symbols in the MRL are
rather small. However, it is problematic for larger domains as found
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in general-purpose information systems like Freebase (Bollacker et al.,
2008). Here, the number of non-logical symbols (representing concepts,
relations and individuals) and NL (multi)words that might refer to them
is orders of magnitude higher, while a small number of syntactic con-
structions still suffices to parse the vast majority of relevant NL utter-
ances, such as factoid questions. Learning the constructions thus needs
relatively few training examples, but is complex and difficult to do with-
out explicit supervision. The learning of word meanings on the other
hand needs much more data but can be done with less supervision and
less complex algorithms. Accordingly, a major recent trend in semantic
parsing is to (partially) separate the acquisition of word meanings from
the acquisition of parsing models, both in terms of the data used and in
terms of the algorithms. We refer to such methods as two-stage methods.

3.6.1 Lexicon Generation and Lexicon Extension

A first family of two-stage methods explicitly acquires or extends a lex-
icon for the semantic parser. The process is driven by the knowledge
base (KB) which defines the non-logical symbols that the MRL uses,
typically Freebase. The KB contains a number of known instances of
concepts (e.g., Ciry(SacraMENTO)) and relations (e.g., LocATEDIN( SAcra-
MENTO, CALIFORNIA)). Large amounts of texts, such as the World Wide
Web, can then be mined for sentences in which the entities in known
concept and relation instances are referenced (this is often easy to do
with simple string matching or separately developed mention detec-
tion techniques), e.g., the sentence Sacramento is a city in California. The
sentence can then be used to generate candidate lexical entries, e.g., as-
sociating the word city with the concept City and the word in with the
relation LocAaTeDpIN.

Krishnamurthy and Mitchell (2012) first acquire the lexicon in this
way, using an existing syntactic dependency parser to parse the sen-
tences retrieved and extracting CCG lexical entries from the resulting
dependency trees using hand-written rules. They then train a prob-
abilistic CCG parser in a weakly supervised fashion, with the global
objective of making the interpretations of retrieved sentences a “good
description” of the knowledge base in the sense that “every relation in-
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stance is expressed by at least one sentence”, along with a syntactic ob-
jective that uses the external syntactic parser as supervision. This train-
ing process also has the function of telling good candidate lexical entries
from bad ones.

Cai and Yates (2013) use a semi-supervised approach on Freeg17, a
newly introduced dataset of factoid questions such as What movies did
Steven Spielberg direct?, annotated with MRs. They first train the system
of Kwiatkowksi et al.| (2010) on a small number of question-MR pairs.
They then extend the resulting Probabilistic CCG with additional lexical
entries for words not found in the supervised training data. Entries
are automatically generated using the initial entries as templates, and
likely correct word-symbol pairs are identified by a regression model.
This model aggregates various association statistics such as Pointwise
Mutual Information and is trained on the small training dataset, which
was manually annotated with symbol-word associations.

Berant et al. (2013) generate candidate lexical entries for the DCS
formalism (Liang et al., 2011) using alignment, a similarity measure be-
tween words and symbols in terms of their extensions, i.e., sets of co-
occurring entity pairs. Additionally, they introduce a bridging opera-
tion, exploiting the type system of Freebase to hypothesize matching
roles where no words are found that explicitly express them. As with
Krishnamurthy and Mitchell (2012), the selection of good lexical entries
is mostly left to the final parsing model. They also introduce a new
dataset of factoid question-answer pairs, much larger and more chal-
lenging than Freeg17: WEBQUESTIONS.

3.6.2 Semantic Parsing via Ungrounded MRs

Another family of two-stage methods is to first parse to an intermediate
representation (variously called “quasi-logical form” or “ungrounded”
MR) without attempting to map NL words to MRL symbols. The sym-
bols of the ungrounded MR, then, are usually just words. Ungrounded
MRs cannot directly be executed. To make them useful, e.g., for ques-
tion answering, a second stage is employed.

Figurecompares different approaches to question answering and
the role semantic parsing plays in them. Approaches using informa-
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Figure 3.1: The role played by parsing (solid arrows) and formal mean-
ing representations in various approaches to question answering: in-
formation extraction methods (A), classical semantic parsing (B), un-
grounded unsupervised semantic parsing (C), open-vocabulary seman-
tic parsing (D), grounded unsupervised semantic parsing (E), semantic
parsing with ontology matching (F).

tion extraction techniques (A) do not use semantic parsing and do not
attempt to explicitly represent the meaning of the question, but map
questions straight to the answer. Classic semantic parsing methods (B)
parse the NL question into an MR, which is then used to query the KB
and retrieve an answer.

Unsupervised ungrounded semantic parsing methods (C), again, do
not attempt to build a (grounded) MR. Therefore, they cannot be used
to query formal KBs. However, they are useful to query large amounts
of text, used as an “unstructured knowledge base”. To this end, they
parse NL utterances into ungrounded MRs (which can just be syntac-
tic dependency trees), then attempt to reduce semantically equivalent
but syntactically different parts of the MR (e.g., nodes or fragments of
it) to the same representation by clustering them. Once both the text
and questions are represented as clustered ungrounded MRs, question
answering can be done by matching the latter against the former. Poon
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and Domingos|(2009) perform the clustering using Markov Logical Net-
works, and Titov and Klementiev|(2011) using a Bayesian model. Both
evaluate their models on a question answering task using biomedical
text as a textual knowledge base.

Krishnamurthy and Mitchell (2015) apply a similar method, under
the label of “open-vocabulary semantic parsing” (D), to the larger do-
main of Freebase entities. They do not query Freebase itself, instead
they query a large amount of automatically entity-linked (but otherwise
unannotated) text. They use a CCG parser to generate ungrounded MRs
for the text, which serve as a collection of “observed facts”. They then
train a Probabilistic Database to rank (question, answer) pairs that cor-
respond to observed facts over pairs that do not. Instead of trying to
reduce semantically equivalent ungrounded MRs to the same form, the
Probabilistic Database scores the ungrounded MR of a question directly.
They find that querying text can answer many questions that querying
KBs cannot because not all questions are expressible in the KB’s MRL.
However, for questions that are expressible, the KB gives more accurate
results. There is thus potential in building systems that can query both
text and KBs.

To apply unsupervised semantic parsing techniques to the task of
querying KBs, Poon| (2013) introduces grounded unsupervised seman-
tic parsing (E). This approach tries to put dependency tree nodes into
semantically equivalent clusters (here: “semantic states”) in an unsu-
pervised fashion, similar to [Poon and Domingos (2009). However, the
clustering is now restricted to use symbols from the target knowledge
base as semantic states so that clustered ungrounded MRs are effec-
tively the same thing as grounded MRs. Learning the correct node-
symbol associations is bootstrapped using string matching measures,
thus assuming that the KB symbols are made up using words from the
same language (here: English) as the NL parsed. Adding mechanisms
for handling non-local semantic relations and some rules for domain-
independent phenomena like superlatives or the interpretation of nu-
merals, this system achieves performance on the ATIS task effectively
tying with supervised methods, despite using neither MR annotations
nor gold-standard answers for learning.

A slightly different way of going from ungrounded to grounded
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MRs is ontology matching (F). Here, the system learns to transform the
former into the latter. Kwiatkowski et al. (2013) use a fixed, domain-
independent (but language-specific) CCG lexicon for English to con-
struct ungrounded A-calculus MRs. These are then transformed into
grounded MRs using a series of transformation operations which re-
place subexpressions of the ungrounded MR with shorter expressions,
containing the same free variables and introducing new ad-hoc sym-
bols. Finally, the ad-hoc symbols are mapped to KB symbols. As exam-
ples, the transformation steps for two subexpressions (from their exam-
ples) are shown here:

(9)  a. tz.Public(z) A Library(z) A Of (z, NewYork)
b.  PublicLibraryOfNewYork
Cc. new_york_public_library

(10) a. Azx.eq(w, count(Ny.People(y) A Je. Visit(y, ..., e)
NAnnually(e)))
Az. HowManyPeople VisitAnually(z, . . .)
c. Az.public_library_system.annual_visits(z,...)

The transformation can be seen as making the “overly compositional”,
syntax-driven analysis provided by the parser less compositional to bet-
ter fit the knowledge base. It serves roughly the same function as the
collapsing of dependency graph fragments and their clustering in Poon
and Domingos (2009). Knowledge about likely word-symbol associa-
tions is incorporated via rich features drawn from language-specific lex-
ical resources and the KB. Parsing and transformation steps are trained
jointly on question-answer pairs using a linear model. Similarly, Reddy
et al.[(2014) obtain ungrounded MRs from a CCG parser, then ground
them by relabeling nodes and edges. The parsing and grounding steps
are trained jointly and discriminatively to rank correct (ungrounded,
grounded) MR pairs over incorrect ones. The approach does not use
question-answer pairs, instead it generates training data synthetically
using the KB and a large entity-linked text corpus.
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3.6.3 Semantic Parsing or Information Extraction?

The focus on new benchmark datasets like FrReeg17 and WeBQuEsTIONS
has helped semantic parsing techniques scale up to NL fragments with
many more word types, and to target MRLs with many more symbols.
But the focus on simple factoid questions risks losing sight of the chal-
lenges that originally motivated semantic parsing. Question answer-
ing can be done without constructing meaning representations, at least
when the questions are simple. [Yao and van Durme (2014) present one
such system targeting the Freebase domain, which uses a syntactic de-
pendency parser but does not do semantic parsing. An analysis by Yao
et al.[(2014) shows that this system does not significantly underperform
when compared to the state-of-the-art semantic parser of Berant et al.
(2013), and for the most part learns the same features, despite not con-
taining a semantic parsing model. As a further case in point, the mo-
del of Berant and Liang| (2014) matched the state of the art accuracy
on the Freeg17 benchmark and vastly advanced it on WEBQUuEsTIONS.
Yet, it does not do semantic parsing as such, instead relying on the low
structural variability of target MRs—reminiscent of the venerable ATIS
requests—to generate a broad set of candidates and score them all. This
suggests, as Yao et al|(2014) point out, that the shift of focus from Geo-
QuEry to Freebase factoid questions may have been a step back in terms
of structural complexity and semantic parsing techniques are thereby
underchallenged. They suggest that the semantic parsing community
should focus on utterances and datasets with higher structural com-
plexity. One step into way more challenging territory is broad-coverage
semantic parsing, which we will take a look at in the next section.

3.7 Broad-coverage Semantic Parsing

The semantic parsing methods we have seen so far target rather re-
stricted styles of text, e.g., robot instructions or factoid questions. Their
motivation, design and evaluation are strongly influenced by concrete
tasks such as flight booking or factoid question answering, and MRLs
are chosen to fit the needs of the respective task. As we have seen, learn-
ing methods that learn to map NL utterances to MRs from training ex-
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Figure 3.2: DRT-based MR for the sentence All equipment will be com-
pletely manufactured, adapted from Bjerva et al.| (2016).

amples, without manually written semantic grammars, are well estab-
lished for this type of semantic parsing, which we call narrow-coverage.

By contrast, broad-coverage semantic parsing targets many styles of
NL utterances, including long and complex ones like newswire articles.
They are less influenced by specific tasks and more by semantic theory,
the desire for a unified representation of many aspects of meaning (see
for example Basile et al.[(2012b); Banarescu et al.[(2013)) and the goal to
use Automated Reasoning for Natural Language Understanding (see for
example Blackburn and Bos| (2005); Bos and Markert| (2005)). Accord-
ingly, MRLs are chosen not so much with an eye on any specific task,
and more by their adequacy as a general formalism for representing
natural-language meaning. As with narrow-coverage semantic parsing,
for a long time broad-coverage semantic parsing relied on hand-written
semantic grammars. Because of the greater complexity and variability
of both targeted NL utterances and MRs, it is not surprising that broad-
coverage datasets annotated with MRs are considerably more difficult
to create, and that, accordingly, it took longer for learning methods to
be applied to broad-coverage semantic parsing.

As an example of an influential broad-coverage system for semantic
analysis which maps (syntactic analyses of) sentences to MRs in a rule-
based fashion (and is thus not a semantic parser in our narrow sense),
consider Boxer (Bos, 2008). Boxer takes CCG derivations without in-
terpretations as input, as produced by a syntactic CCG parser such as
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that of Clark and Curran|(2007). It assigns every word an interpretation
based on its category, part-of-speech tag, lemma and possibly other tags
provided by external taggers, such as named-entity taggers or word-
sense disambiguation systems. The MRL is based on Discourse Repre-
sentation Theory (DRT; Kamp and Reyle, |1993). The inventory of non-
logical symbols is drawn from WordNet (Fellbaum) 1998) for concepts
and VerbNet (Kipper et al,, 2008) for predicate-argument relations. By
default, concepts and relations are chosen using heuristics and statistics
collected offline. An example MR is shown in Figure

The release of the Groningen Meaning Bank (Basile et al., 2012b, see
also Chapter 5| of this thesis), a large, multi-domain corpus containing
sentence-MR pairs produced by Boxer and partially manually corrected,
opened the way to applying established learning methods for seman-
tic parsing to a broad-coverage domain. To this end, |Le and Zuidema
(2012) define a semantic composition formalism in which fragments of
the DRT-based MRs are represented as graphs and combined via two
operators: binding (unifies two discourse referents) and wrapping (places
a condition into a box). They then use machine learning to acquire a
lexicon of suitable fragments and train a probability model guiding the
composition of fragments into words. [Beschke et al. (2014) present and
evaluate a method for semantic CCG induction on the same dataset.

The release of AMRbank (Banarescu et al., 2013) spurred a much
larger wave of learning methods now applied to broad-coverage seman-
tic parsing. AMRbank is a large, multi-domain corpus containing sen-
tences manually annotated with AMRs (Abstract Meaning Representa-
tions). AMRs are directed acyclic graphs. Non-leaves represent enti-
ties, including events. Leaves represent concepts. The concept symbols
used are PropBank framesets (Palmer et al., 2005) for events, English
words for common (non-event) nouns and Wikipedia URLs for named
entities. Edges connect entities to their concepts and events to their par-
ticipants and are labeled with PropBank argument labels and other re-
lation symbols. The AMR MRL puts a strong emphasis on semantic
normalization, reducing syntactically different forms of expressing sim-
ilar semantic frame instances to the same representation. For example,
the phrases “a handsome sailor”, “a handsome person who sails” and
“a sailor is handsome” all have equivalent AMRs. An example AMR
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Figure 3.3: AMR for the sentence All equipment will be completely manu-
factured, adapted from Bjerva et al.| (2016).

is shown in Figure For a discussion of the merits of AMRs as a
general-purpose MRL, see Bos|(2016).

Flanigan et al. (2014) present JAMR, a system that breaks the prob-
lem of mapping NL utterances to AMRs down into two stages: con-
cept identification, generating disjoint AMR subgraphs corresponding to
content words, and relation identification, finding the right relations be-
tween them. Concept identification is approached using sequence la-
beling, and relation identification using a maximum-scoring connected
subgraph algorithm. Training relies on an explicit mapping between
(multi)words and AMR subgraphs, which is induced automatically us-
ing an aligner. Werling et al.| (2015) observe that the concept identifica-
tion stage is the more difficult one and improve it, replacing the static
lexicon with a more robust subgraph generation method that captures
the regular ways in which AMR maps content words into subgraphs.
For example, numerals like five are systematically mapped to values like
5, deverbal nouns like sailor often introduce frames like sail-01, etc.

Wang et al.|(2015b,a)) present CAMR, a system that uses a transition-
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based algorithm to transform syntactic dependency trees into AMRs.
The transition actions can label nodes, label edges, swap heads and de-
pendents, reattach nodes, introduce re-entrancies, etc. It chooses trans-
formation actions at each stage according to a linear model, trained us-
ing the averaged perceptron algorithm. |Artzi et al.| (2015) train a CCG
parser that produces AMRs in two stages. In the compositional first
stage, underspecified CCG derivations are created where all relation
symbols except ARGO and ARGI, as well as the entity nodes represent-
ing anaphora, for example of pronouns, are replaced by placeholder
terms. In the non-compositional second stage, a Factor Graph model
resolves anaphoric references and fills in the relation symbols. The ini-
tial lexicon for the CCG parser is created by annotating 50 training ex-
amples. Learning then alternates, similar to Zettlemoyer and Collins
(2005); |Artzi and Zettlemoyer| (2013b), between updating the lexicon
and updating the model parameters.

The SemEval 2016 shared task on AMR parsing brought many more
approaches to the scene. Many of them are incremental improvements
of CAMR, e.g., adding new features, new lexical resources, neural net-
works, heuristic post-processing or ensembles. Two participating sys-
tems, one of which based on Boxer, are not trained on AMR data but
employ independently developed toolchains and conversion of the out-
put to AMR. Novel approaches include one employing a Learning to
Search algorithm, a novel transition-based algorithm and one combin-
ing the predictions of specialized neural networks with a greedy algo-
rithm. For details, see May|(2016).

In Chapter |7}, we will add to the work on broad-coverage semantic
parser learning by introducing a system that learns via cross-lingual
lexicon induction and cross-lingual supervision.
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Chapter 4

Situated Semantic Parsing of
Robotic Spatial Commands

4.1 Introduction

When interpreting utterances, humans seldom look at the utterances
alone. Knowledge about the context in which an utterance is made
helps in determining its correct interpretation. This can also be true
of computers. Consider the simple example of the robot in Figure
faced with a board of colored shapes and the instruction “Move the
pyramid on the blue cube on the gray one.” There are at least two ways
to interpret this instruction: “Move the pyramid that is sitting on the
blue cube onto the gray cube”, or “Move the pyramid that is sitting on
the blue cube which is itself sitting on the gray cube.” But only the for-
mer interpretation makes sense in the pictured situation, because there
is no blue cube anywhere on the board sitting on a gray cube.

Using the state of the world (the board in this case) as additional
information, a semantic parser should be able to arrive at the correct in-
terpretation more reliably. We investigate this hypothesis in this chap-
ter in the context of the SemEval 2014 Shared Task 6 (Dukes| [2014), a
narrow-domain semantic parsing task that consists in mapping natu-
ral-language robotic commands to unambiguous commands in a formal
language, Robot Control Language (RCL; |[Dukes, |2013a). In particular,
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Figure 4.1: A robot faced with the command: “Move the pyramid on

the blue cube on the gray one”. Picture from Dukes| (2014).

we investigate whether existing techniques for semantic parsing with
CCG can easily be adapted to this new domain and target representa-
tion, and in how far integrating reasoning about the context helps with
finding the correct interpretations.

4.2 Task Description

Each instance of the task consists of a context, an English command and
an interpretation of the command in RCL. The configuration and the
English command are input to the system, and it has to come up with
the correct interpretation.

The context is a machine-readable representation of a board consist-
ing of 8x8 tiles. Each tile may hold a shape, which has one of eight colors
and is either a cube or a pyramid. Cubes can also support other shapes
stacked on them, but pyramids cannot. Each shape on the board must
be supported by a cube or a tile, it cannot hover. The context also spec-
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ifies the current position of the robot’s gripper over the board, and the
shape it is currently holding, if any.

RCL expressions are rooted ordered trees whose nodes are labeled
with tags. We will write them in the form (¢ :h) where ¢ is the root
tag and h is the sequence of subtrees of the root’s children. Leaves are
abbreviated as just their tags. For example, here is an English command
with an RCL interpretation:

(1) a. move the green pyramid in the bottom left corner
b. (event:
(action:move)
(entity:(color: green) (type:prism))
(destination:(spatial-relation:(relation: within)
(entity:(indicator:back) (indicator:left)
(type: corner))))

Subtrees tagged entity denote objects such as shapes, tiles or edges and
corners of the board. Their descriptions consist of subtrees tagged type
specifying their type, color specifying their color, spatial-relation de-
scribing spatial relations to other objects, etc. Trees tagged event denote
actions the robot should take; the action type is specified by subtrees
tagged action, containing one of three values: take (take an object into
the gripper), drop (drop an object that is currently in the gripper onto a
specified object) or move (take and then drop an object). Trees tagged
sequence denote sequences of events, i.e., instructions that the robot is
supposed to carry out one after the other. For a more detailed and com-
plete description of RCL, the reader is referred to Dukes| (2013a).

Train Robots (Dukes| 2013b) is a dataset consisting of several thou-
sand such instances. The English commands were collected through
crowdsourcing and translated to RCL through manual expert annota-
tion. The pre-terminals (parents of leaves) of RCL trees also contain
links to corresponding English words in the command where applica-
ble.

For the SemEval shared task, participants were provided with 2,500
instances for training and development. Final evaluation was performed
on a held-out set of 909 instances. A spatial planner, a component that
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Figure 4.2: The RCL expression from Example (1) represented as a tree
diagram. Internal nodes are annotated with constituent types h, a and c.
Pre-terminals are aligned to words in a corresponding natural-language
expression.

takes RCL expressions and creates execution plans for the given context,
was provided as a Java library.

4.3 Extracting a CCG from RCL

4.3.1 Transforming RCL Trees to CCG Derivations

To apply CCG parsing techniques to the task, we first need a corpus of
CCG derivations of English commands whose interpretations are RCL
expressions. We obtained this corpus by automatically transforming
RCL expressions into derivations. To make this mapping more direct
and unambiguous, we do not use CCG’s standard basic categories N,
NP, S and PP, but instead basic categories corresponding to RCL tags.

In each training example, each pre-terminal (parent of a leaf) can be
aligned to one or more words in the corresponding natural language
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expression. An example is shown in Figure Since the alignments to
words are not crossing, we can interpret the RCL tree as a phrase struc-
ture tree for the sentence and use the algorithm of Hockenmaier and
Steedman!| (2007) to transform it into a CCG derivation. We extend the
algorithm with a semantic step that makes sure the derivations would
produce the original RCL expressions. The procedure is as follows:

1. Determine constituent types. Each subtree is assigned a con-
stituent type depending on its tag. We treat action, relation and type
constituents as heads, entity and destination constituents as complements
(i.e., arguments) and cardinal, color, indicator, measure and spatial-rela-
tion constituents as adjuncts (i.e., modifiers). For sequence nodes that
have multiple event children, we treat the first as head and the rest as
adjuncts. A corresponding constituent type label h, a or c is added to the
label of each internal node (cf. Figure [4.2).

2. Assign lexical semantics. To the label of each pre-terminal, an
RCL expression is added which is a copy of a connected subgraph of the
tree itself (without the constituent type labels). Which subgraph pre-
cisely depends on the type of pre-terminal: For a-type and c-type nodes,
the subgraph includes only the pre-terminal and its daughter. For h-
type nodes the parent is also included, as well as any subtrees tagged id
or reference-id the parent may have (these subtrees represent anaphoric
links and are not linked to other lexical material). To illustrate, the la-
bel of the action:h node in Figure 4.2] becomes action::(event : (action :
move)), and color:a becomes color:a:(color: green). The leaves are now
no longer needed, so we remove them, making the pre-terminals the
new leaves. Remember that words are linked to the pre-terminals, not
terminals, so the links are not lost.

3. Add sequence nodes. RCL expressions that contain more than
one event have a root node tagged sequence, which is the parent of all
event nodes. To preserve this structure in the CCG transformation, an
additional sequence node tagged sequence is introduced between the
root and the child, with the same constituent type and semantics as the
child.

4. Binarize the tree. Each local tree with more than two daughtersis
binarized by inserting dummy nodes, provisionally labeled C':h where
C'is the tag of the parent. The order of binarization is determined by the
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Figure 4.3: Result of the CCG transformation applied to the tree in Fig-

ure @

constituent types: left adjuncts (such as the first indicator in Figure
are split off first, followed by right adjuncts (such as the destination in
Figure[4.2), left complements and right complements.

5. Assign CCG categories. Starting from the root, the tag of each
node is replaced by a CCG category:

e The root gets its tag (event or sequence) as category.

e c-type nodes get their tag (entity or destination) as category. Their
sibling gets category P/T if it is on the left and P\T if it is on
the right, where T' is the tag of the c-type node and P is the cat-
egory of the parent. For example, the destination node in Fig-
ure 4.2| gets destination as category, and its left sibling therefore
gets event/destination because the parent’s category is event.

e a-typenodes such as the two indicator nodes in Figure[d.2)get cate-
gory P/ P if they are on the left of their sibling and P\ P if they are
on its right, where P is the category of their parent. The sibling
gets category P.

e Internal nodes without siblings get their tag (entity or spatial-rela-
tion) as category.
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Constituent type labels are dropped. The result for our example is
shown in Figure

4.3.2 The Lexicon

Once the training corpus is transformed, a lexical entry w := C: [ is
extracted for each leaf that is aligned to one or more natural-language
words. w is the sequence of aligned words, C' is the CCG category of
the leaf and I is the RCL interpretation of the leaf.

If more than one word is in w, we have a multiword lexical item. In
this case w is just a list of word forms. If w contains only a single word,
we append part-of-speech information to it to prevent lexical items from
overgenerating. Parts of speech are obtained using the C&C POS tagger
(Curran and Clark), 2003a), trained on the Penn Treebank.

Examples of lexical items are:

(block/NN) := entity: (entity: (type: (cube))

(cube/NN) := entity: (entity: (type:(cube))

(on/IN) := spatial-relation/entity:
(spatial-relation : (relation : above))

(on, top, of) := spatial-relation/entity:
(spatial-relation : (relation : above))

Note how different lexical entries with the same category and se-
mantics account for lexical variation.

To allow for words that are not linked to the meaning representa-
tion, such as the two instances of the in Figure we also consider a
special type of lexical item which is semantically empty. The X here is
a variable that can take on any category as value:

o (w):=(X/X):nil

o (w):= (X\X):nil
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4.3.3 Combinatory Rules

Although we have already produced and shown CCG derivation trees,
we still have to specify the combinatory rules that license these deriva-
tions, given the lexical items we extracted. Our CCG primarily uses the
standard rules of forward and backward application. However, we give
a modified, non-standard and RCL-specific semantics to these rules.
This makes notation simpler and ensures that the semantics of (most)
intermediate constituents can themselves be (partial) RCL expressions
rather than A-terms with variables. This is important for interfacing
with the spatial planner during parsing.

The two rules are defined as follows:

(2)  Forward application (>°)

a. For absorbing semantically empty words
(X/X)nil X:h = X:h
b. For modifiers
(X/X):a X:(t:h) = X:(t:ah) where a # nil
c. For non-modifiers
(X/Y):(t:h) Y:c = X:(t:hc)where X #Y

(3)  Backward application (<°)

a. For absorbing semantically empty words
X:h (X\X):nil = X:h
b. For modifiers
X:(t:h) (X\X):a = X:(t:ha)
c¢.  For non-modifiers
Yic (X\Y):(t:h) = X:(t:ch)where X #Y

In words, the interpretations of modifiers and arguments are combined
with those of the heads simply by adding the former as an additional
child to the latter.

We also use a restricted form of forward composition to form chains
of entity adjuncts:

(4)  Forward composition (>1)
(entity/entity):a (entity/entity):b = (entity/entity):ab
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Figure 4.4: An RCL expression where one leaf is not linked to any word

This is motivated by our use of the spatial planner. Without forward
composition, we would, e.g., not be able to build a constituent with
the semantics (entity:(color: green)(color:red)(type: cube-group)) in the
context of a stack consisting of green and red cubes, but no stack consist-
ing exclusively of red cubes—the planner would filter out the interme-
diate constituent with semantics (entity: (color:red)(type: cube-group)).

Finally, we use type-changing rules. These are automatically ex-
tracted from the training data. Some of them account for unary pro-
ductions within RCL expressions by introducing an additional internal
node, such as the destination node in Figure For example:

(5) a. sp-relationth = destination:(destination:h)
b. entity:h =

spatial-relation/spatial-relation: (measure:h)

Others account for RCL leaves that are not linked to any words. A typ-
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ical example is shown in Figure where the annotation assumes a
spatial modifying relation “above” between “prism” and “blue cube”
that is however not linked to any word. Rules like the following deal
with this by not only introducing an internal node, but also a branch
leading to the unlinked leaf:

6) a. entity:h =
entity/entity: (spatial-relation: (relation: above)h)
b. entity/entity:h =
entity: (spatial-relation:h(type:region))

434 Anaphora

Anaphora are marked in RCL entity expressions by the subexpression
(id : 1) for antecedent entities and (reference-id : 1) for anaphoric enti-
ties. The latter have the special type reference, in which case they are
typically linked to the word it, or type-reference, in which case they are
typically linked to the word one, as in the yellow one. More than one
anaphoric relation in a command, and thus, other IDs than 1, are possi-
ble, but extremely rare. We do not explicitly try to resolve anaphora, but
merely generate versions both with and without the id subexpression
for each entity lexical item seen in training as an antecedent. We then
rely on the parser and spatial planner to find a parse with the correct
item marked as antecedent. If the spatial planner rejects a subexpres-
sion because it contains an unknown reference ID, we accept it anyway
because the expression can later combine with another one that contains
the antecedent. However, at the level of complete parses, those contain-
ing a reference-id expression but no id expression—or vice versa—are
rejected. As a heuristic, we also reject parses where reference-id pre-
cedes id because we found this to be a noticeable source of errors, and
no cataphora in the training data.

4.4 Training and Decoding

Following Zettlemoyer and Collins|(2007), we use a CKY CCG parser in
combination with simple perceptron updates: iterate over the training
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corpus T times, for each sentence producing all parses. Each parse is
characterized by a number of features and scored using a global weight
vector. The weight vector is updated by subtracting the feature vector of
the highest-scoring parse and adding the feature vector of the highest-
scoring correct parse. No update is performed if the highest-scoring
parse is correct, or no correct parse was found. We parallelize training
using iterative parameter mixing (McDonald et al.,2010) with 12 shards.

4.4.1 Semantically Empty and Unknown Words

At the beginning of each parsing process, we consider each contigu-
ous subsequence of words in the sentence and add all lexical items ex-
tracted from the training data w := C': I to the chart where w matches
the words in the subsequence. In the case of single words, we also re-
quire the POS tag in w to match the POS tag of the word in the sentence.
We also add a forward and a backward semantically empty lexical item
to the chart for each word. Finally, in decoding, the parser also has to
deal with words not seen in training. For one, there are the nil items,
so it is possible to treat the unknown words as semantically empty. In
addition, for any unknown words, we look at other single-word lexical
items with the same POS tag and generate lexical items with the same
category and interpretation for the unknown word, hoping that features
and the spatial planner will guide the parser to the right choice. To limit
the search space, this is currently only done for nouns since we found
the greatest lexical variation to occur with them.

4.4.2 Features
Each chart edge is characterized by the following local features:
e cach lexical item w := C': I used.

e each instance of a combinatory rule used, e.g., >0,

e (p,c, s) for each lexical item used where p is the POS tag (or empty
for multiwords). This allows to learn correlations between cat-
egory/semantics pairs and particular parts of speech, primarily
for unknown words.
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e each instance of a type-changing rule used, together with the se-
mantic head word of the constituent it roots, e.g., (x1,in). This
helps to learn not to use type-changing rules where they don’t
make sense. E.g. the word squares often heads entity descriptions
that type-change into measure phrases but the word cube doesn't.

e the root tag of the semantics of each constituent, together with the
word to its immediate left, e.g., (destination, from). This example
feature is indicative of typical erroneous parses where spatial ad-
juncts corresponding to from-phrases are misparsed as destination
complements. The word from provides a strong clue against such
a parse but would be ignored without such a feature because it is
not aligned to any RCL node.

e the root tag of the semantics of each constituent, together with the
first word in it, e.g., (spatial-relation, above).

4.4.3 The Spatial Planner

The spatial planner provided together with the data provides access to
the context in which each command is to be interpreted. It can tell us
for some RCL subexpressions, chiefly entity expressions, whether they
“make sense” given the context. For example, if the parser builds an
edge with semantics (entity : (type : cube)(color : red)) but there is no
red cube anywhere on the board, we can immediately reject the edge.
Probably we picked (entity: (type: cube)) as the semantics for some un-
known noun, like prsim (a misspelling), and now see we were wrong.
Rejecting edges denoting absent entities assumes that no negations or
hypothetical descriptions are used, which is the case for this task. By
rejecting them, we avoid errors and reduce the search space.

The planner also helps resolve attachment ambiguities early: in the
command put the prism on the cube, a constituent with semantics (entity :
(type : prism)(spatial-relation : (relation : above)(entity : (type: cube)))) is
a possible but incorrect parse. If we are lucky enough that no pyramid
is actually sitting on a cube in the microworld, the planner will weed it
out.
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We have not yet explored making the fullest possible use of the spa-
tial planner for checking the validity of event or sequence expressions,
which would involve simulating changing the state of the world as a
sequence of event instructions is carried out. Currently we only filter
out initial event instructions with action drop for scenes in which there
is nothing initially in the robot’s gripper to be dropped. RCL requires
the action move here instead, a distinction which is often not made in
the natural language commands.

4.5 Experiments and Results

We trained the final model on the 2,500 training examples provided,
although discarding those longer than 15 words to speed up training.
In both training and decoding, we used a beam search strategy that
only allows the highest-scoring 60 edges in each chart cell to be used
for building further edges. To prevent an overuse of nil items while us-
ing positive evidence for nil items in the training data, the weights of
all non-nil lexical items seen in the training data were initialized to 1,
and those of all nil items corresponding to words seen unaligned in the
training data to 0.5. All other feature weights were initialized to 0. The
number of training epochs 7" was set to 3. These values were chosen
experimentally using 80% of the training data, and another 10% of it as
development test data.

Table 4.1{shows the results of the shared task. When using the spa-
tial planner, our system parsed 789 of the 909 test sentences (86.80%)
exactly correctly, making third place among the participating systems.
When not using the spatial planner, it still parsed 720 sentences (79.21%)
exactly correctly, making second place by a wide margin and proving
to be one of the more robust systems in this scenario.

A preliminary analysis suggests most errors are related to pronoun
ellipsis, the ambiguous word one, anaphora or attachment ambiguity.
We believe some further careful feature engineering and extended use
of the spatial planner could go a great length to improve accuracy fur-
ther.
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Table 4.1: Results of the shared task, adapted from Dukes| (2014).

System With planner Without planner
Packard (2014) 92.50 90.50
Stoyanchev et al.|(2014) 87.35 60.84
This work 86.80 79.21
Ljunglof| (2014) 86.10 51.50
Mattelaer et al. (2014) 71.29 57.76
Kate| (2014) - 45.98

4.6 Conclusions

The result shows that standard CCG-based semantic parsing techniques
can be successfully applied to the domain of robotic spatial commands
and profit from the integration of a spatial planner. We were able to
apply CCG to the new domain and meaning representation formalism
by sticking to CCG’s basic principles, adapting the basic categories and
interpretation rules, and exploiting composition to ensure smooth in-
terfacing with the spatial planner. This illustrates CCG’s generality and
flexibility concerning linguistic domains, meaning representation for-
malisms and parsing strategies, including the incorporation of extra-
linguistic cues. Seeing this, we feel justified in choosing CCG in mov-
ing on to bigger challenges in the next part, namely broad-coverage and
cross-linguistic semantic parsing.
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Chapter 5

Meaning Banking

5.1 Introduction

Every natural language processing task requires data—for evaluation,
and for training. As we have seen in Chapters [3| and [} for narrow-
domain semantic parsing, a number of datasets exist. Most of these
were relatively straightforward to build because only a limited, pre-
cisely circumscribed range of aspects of meaning is relevant to the re-
spective task and has to be represented in the meaning representations.
For broad-coverage semantic parsing, building datasets is considerably
more difficult because a much larger range of potentially relevant as-
pects of meaning has to be considered, and annotated consistently.

The Groningen Meaning Bank (GMB; Basile et al., 2012b) is the first
large-scale effort to build a broad-coverage corpus of texts paired with
logical meaning representations covering the full propositional content
(and projected content, such as presuppositions) of English text. The
main emphasis is on logical meaning representations in the sense that
they have a well-defined model-theoretic interpretation, in the vein of
Montague (1970, 1973). We describe the meaning representation for-
malism in Section5.21

Another emphasis is on large size, so that the corpus can be used to
study linguistic phenomena and their semantics in an empirical, data-
driven way. The latest release of the GMB, version 2.2.0, contains 10,000
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texts with a total of over a million tokens. At this scale, the complexity
of the annotation task makes annotation from scratch by human anno-
tators infeasible. Effective support of annotation by automatic tools is
required. The GMB project opted for an approach dubbed “human-
aided machine annotation”, where a first annotation is done entirely
automatically and then improved iteratively as more human annotation
decisions become available. It also adopted the “release early, release of-
ten” principle from software engineering (Raymond, 1999) in order to
enable early experimentation and create a tight feedback loop between
the creators and the scientific community. This means that annotations
are published even before they have been fully corrected by human an-
notators. They are then improved in subsequent releases. They are also
accessible via the public Web interface of the GMB, where everybody
can not only view but also edit the current development version.

Automatic annotation relies on a pipeline of tools that process natu-
ral language on different levels, from tokenization to tagging to parsing
to semantic construction. To combine automatic and human annota-
tion decisions in the most effective way, corrections should be made
on the lowest possible level. For example, if a mistake by the part-of-
speech tagger leads to a wrong analysis, it is preferable to correct the
part-of-speech tag rather than the parse or the meaning representation
directly. To make this possible, the GMB is opinionated about the rela-
tion between strings and their interpretation. It does not only contain
texts and meaning representations, but also character-level annotation
such as tokenization, token-level annotation such as tags and corefer-
ence chains and sentence-level annotation such as syntax trees. The
annotation scheme for all these layers is described in Section The
process of building the GMB via human-aided machine annotation is
described in Section5.4l

In Section 5.5 we discuss the results produced by the GMB project,
and briefly compare it to other recent semantic annotation efforts. Sec-
tion 5.6 concludes.
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5.2 Representing Meaning with Discourse
Representation Structures

The meaning representation formalism of the GMB is rooted in Dis-
course Representation Theory (DRT). Since its original conception by
Hans Kamp in the 1980s, DRT has been successfully used to model
and study a wide variety of semantic phenomena, including anaphora,
tense and aspect, plural semantics (Kamp, 1984; Kamp and Reyle,1993),
presuppositions (Van der Sandt, [1992), conventional implicatures (Ven-
huizen et al, 2014), rhetorical structure (Asher and Lascarides, 2003)
and modality (Bos, 2004). DRT has thereby proven useful as a unify-
ing theory for representing diverse aspects of meaning in a single type
of representation. Moreover, these representations have well-defined
model-theoretic interpretations (Kamp and Reyle, [1993) which can also
be defined indirectly via a translation into first-order logic (Muskens,
1996; Bos, 2004), enabling the use of automated reasoning software for
performing inference on natural-language text (Blackburn et al.} [1999;
Blackburn and Bos, [2005; Bos and Markert, [2006).

The meaning representations of DRT are called discourse representa-
tion structures (DRSs). A DRS is a pair of a list of discourse referents and a
list of conditions. It is usually written as a box with an upper part for the
discourse referents and a lower part for the conditions. The discourse
referents are symbols referring to elements of the discourse, such as per-
sons, things or events, and conditions are formulas asserting something
about the referents. For example, a DRS representing the meaning of the
sentence Max is a famous singer might look like this:

x1

named(x1, Max)
famous(x1)
singer(x1)

(1)

Here, one discourse referent is used: x1. Three conditions then assert
that x1 is named Max, that x1 is famous, and that x1 is a singer, respec-
tively.

In the following subsections, we describe in more detail the flavor
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of DRT used in the GMB. For the purposes of this thesis, a slightly sim-
plified presentation is sufficient. In particular:

e We ignore different types of name conditions, treating all names
as being of the same type.

e We leave aside the treatment of tense and aspect, suppressing all
related conditions from the annotation scheme.

e We deal only with sentences in isolation, not texts, and do not
represent rhetorical structure.

e We do not deal with non-compositional phenomena such as ana-
phora, bridging or accommodation. We leave all anaphora unre-
solved in our meaning representations.

5.2.1 Basic Conditions
The basic conditions types used are
e one-place relation conditions of the form <symbol>(<ref>),
e two-place relation conditions of the form <symbol>(<ref>, <ref>),
¢ name conditions of the form named(<ref>, <string>),
e subset conditions of the form <ref>C<ref>,
e hybrid conditions of the form <ref>:<drs>,
e equality conditions of the form <ref>=<ref>,
e cardinality conditions of the form | <ref> | =<number>, and

o time conditions of the form timex(<ref>, <time expression>).

To represent proper names of individuals such as persons, locations
or organizations, we use a name condition which relates a discourse
referent to the name. For example: named(x1, Max).



5.2. Discourse Representation Structures 77

Meanings of common nouns are represented using the sense inven-
tory of WordNet 3.0 (Fellbaum), 1998). We use one-place relation condi-
tions with canonical synset identiﬁersﬂ For example: book.n.02(x2).

Personal pronouns trigger conditions that describe them using the
closest matching WordNet sense where applicable: person.n.01 for I,
me, you, we and us and thing.n.12 for they (note that this is a supersense
of person.n.01 but also of other senses, as they can refer to persons and
non-persons). The third-person singular pronouns he, him, she, her and
it are represented using the special (non-WordNet) predicate symbols
male, female and neuter.

We use a neo-Davidsonian event semantics. A verb contributes its
own discourse referent, representing the event the verb describes. Word-
Net verb sense identifiers are used as one-place predicate symbols over
events, e.g., pass.v.05(e3). The participants in the event are related to
it using two-place relation conditions using symbols corresponding to
semantic roles. For participants central to the event, we use the most
specific applicable semantic role from the unified VerbNet/LIRICS se-
mantic role hierarchy defined by Bonial et al.|(2011). For example: Re-
cipient(e3, x1).

The DRS representing the meaning of the sentence Mary gave me a
book then looks like this:

el x2 x3 x4
pass.v.05(el)
named(x2, Mary)
Agent(el, x2)
person.n.01(x3)
Recipient(el, x3)
book.n.02(x4)
Theme(el, x4)

Note that the names of discourse referents are arbitrary. By convention,
we use letter-number combinations where the number is unique within

'Each synset is represented by the first lemma in it followed by its part of speech
(n, v, a, s or r) and the corresponding sense number. This is the convention used, e.g.,
in NLTK (Bird et al.,|2009).
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the DRS and the letter indicates the type of the discourse referent: e for
events, s for manners, p for propositions and x for others.

The representation does not distinguish between the meanings of
singular and plural nouns. However, coordinated noun phrases intro-
duce a discourse referent for each conjunct and an additional discourse
referent to represent the entire group, related through subset condi-
tions. For example, for the sentence Cats and dogs are singing:

x1 x2 x3 e4
cat.n.01(x1)
x1 C x3

(3) dog.n.01(x2)
x2 C x3
sing.v.02(e4)
Agent(e4, x3)

A DRS can be embedded within another DRS via a so-called hybrid
condition. A hybrid condition names the inner DRS with a discourse
referent that can then also be referred to by other conditions in the outer
DRS. This is, for example, used to represent clausal complements as in
John likes to swim:

x1 e2 p3

named(x1, John)
like.v.02(e2)
Experiencer(e2, x1)
(4) Stimulus(e2, p3)

e4

p3: | swim.v.01(e4)
Theme(e4, x1)

Hybrid conditions are also used, in combination with equality condi-
tions, to represent the meaning of copulas connecting two noun phrases.
The hybrid condition allows for a reified representation and thereby for
modification, as in John is really a boxer:
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x1 p2

named(x1, John)
truly.r.01(p2)

(5) 3

p2: | boxer.n.01(x1)
x1=x3

Like verbs, the meanings of adjectives and adverbs are represented by
introducing an additional discourse referent which is related to the dis-
course referent that the adjective/adverb describes, by means of a se-
mantic role. Adjectives introduce events that use the Theme role to
describe things. Adverbs describing manners, times and places intro-
duce discourse referents that themselves fill the corresponding Verb-
Net/LIRICS role (Manner, Time or Place) of the event they further de-
scribe. The reified representation of adjectives and adverbs allows for
straightforward representation of additional modifiers, e.g., intensifiers
such as very. For example, the sentence A very tall man is singing happily
is represented as follows:

x1 e2 e3 s4 s5
man.n.01(x1)
tall.a.01(e2)
very.r.01(s4)
Manner(e2, s4)
Theme(e2, x1)
sing.v.02(e3)
happily.r.01(s5)
Manner(e3, s5)
Agent(e3, x1)

Occasionally, adjectives have additional arguments, in which case we
also use VerbNet/LIRICS roles, For example, in He is not like us, both he
and us fill Theme roles of like, and in My house is not far from here, My
house fills the Theme role of far, and here fills the Source role.
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An exception to the above are fully intensional adverbs (cf. Larson)
2002, Section 3), which we represent as not introducing a discourse ref-
erent but an embedded DRS as in John allegedly sang:

x1 p2

named(x1, John)
e3

p2: | sing.v.02(e3)
Agent(e3, x1)

allegedly.r.01(p2)

@)

The meaning of adjectives in the comparative degree is not explicitly
distinguished. However, if there is an object of comparison, it is related
to the event using the special than relation. For example, for the sentence
Jane is taller than John:

x1 e2 x3
named(x1, Jane)
®) tall.a.01(e2)
Theme(e2, x1)
than(e2, x3)
named(x3, John)

For relations other than verb and adjective arguments, which are cov-
ered by VerbNet/LIRICS roles, a special inventory of two-place relation
symbols is used, based on the set of English prepositions and subordi-
nating conjunctions. They are used to represent the meaning of:

e prepositional adjuncts to nouns, using the respective preposition,
e prepositional adjuncts to verbs, using the respective preposition,
e possessives, using of,

e noun-noun compounds, using the preposition semantically best
describing the relation between the parts,
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e bare-noun-phrase adjuncts referring to times, using at for clock-
times and other points in time, on for days and in for other periods
of time,

e bare-noun-phrase adjuncts expressing per-unitamounts asin $ 150
a barrel, using the preposition semantically best describing the re-
lation, usually for,

e adverbial clauses, using the respective conjunction.

For example, the sentence Mary'’s friend hosted a beach party with danc-
ing Friday for John because he graduated receives this representation:

x1 x2 e3 x4 x5 x6 x7 x8 p9
named(x1, Mary)
friend.n.01(x2)

of(x2, x1)

host.v.01(e3)

Agent(e3, x2)
beach.n.01(x4)
party.n.02(x5)

on(x5, x4)
dancing.n.01(x6)

(9) with(e3, x6)

for(e3, x5)

named(x7, Friday)
on(e3, xX7)

named(x8, John)

for(e3, x8)

because(e3, p9)

ell
graduate.v.01(el0)

male(x8)
Agent(el0, x8)

p9:

Cardinalities are represented using cardinality conditions. For exam-
ple, for the sentence Two dogs barked, we have:
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x1 e2
dog.n.01(x1)
(10) Ix1] =2
bark.v.04(e2)
Agent(e2, x1)

Time periods are represented as named entities in the case of week days,
otherwise as entities related using time conditions to a string of the
form SYYYYMMDDHHmMmm where S is a sign (— for B.C., + for A.D.),
YYYY is a year, MM is the month of the year, DD is the day of the
month, HH is the 24-hour-clock hour of the day, mm is the minute of
the hour. The places for date and time parts not expressed are filled up
with X’s. For example, the string for in the 1980’s is +198XXXXXXXXX,
for 250 B.C., -250XXXXXXXX, for July, XXXXX07XXXXXX, for 8:30 P.M.,
XXXXXXXXX2030, etc. This is the DRS for the sentence The lecture starts
at 8 o’clock:

x1 e2 x3

lecture(x1)

11 start(e2)

at(e2, x3)

timex(x3, XXXXXXXXX0800)

5.2.2 Complex Conditions

Multiple conditions listed in the same DRS implicitly form a logical con-
junction. For example, we can read the following DRS logically as There
are entities x1 and e2 such that x1 is a policeman and e2 is a singing event and
x1 is the Agent of e2:

x1 e2
policeman.n.01(x1)
sing.v.02(e2)
Agent(e2, x1)

(12)
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Logical relationships between conditions other than conjunction can be
expressed by wrapping the respective conditions and discourse refer-
ents in embedded DRSs under a logical operator. A logical operator
and its DRS argument(s) form a complex condition. The complex condi-
tion types are

negation conditions of the form — <drs>,
implication conditions of the form <drs>=-<drs>,
disjunction conditions of the form <drs> Vv <drs>,
question conditions of the form <drs> 7 <drs>,
necessity conditions of the form O <drs>, and

possibility conditions of the form & <drs>.

Negation conditions are used to represent the meaning of a simple
negation in a sentence, as in Max does not sing:

(13)

x1

named(x1, Max)
e2

- | sing.v.02(e2)
Agent(e2, x1)

They are also used to represent negative existential quantification, as in
No policeman sings:

(14)

x1 e2
policeman.n.01(x1)
sing.v.02(e2)
Agent(e2, x1)
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An implication condition asserts that the first argument implies the sec-
ond argument. Implication conditions are used to express the meaning
of simple conditionals, as in If Max sings, Anna dances:

x1 e2 x3 e4

(15) named(x1, Max) N named(x3, Anna)
sing.v.02(e2) dance.v.02(e4)
Agent(e2, x1) Agent(e4, x3)

They are also used to represent universal quantification, as in Every po-
liceman sings:

e2
(16) x1 -
policeman.n.01(x1) = | sing.v.02(e2)
Agent(e2, x1)

They are furthermore used to represent the meaning of the focus parti-
cle only, as in Only policemen sing. The representation asserts the truth
of the prejacent Policemen sing (cf. Horn}1996), then adds an implication
with the unfocused material sing represented in the antecedent and the
focused material policemen represented in the consequent:

x1 e2
policeman.n.01(x1)
sing.v.02(e2)
(17) Agent(e2, x1)
x3 e4
sing.v.02(e4) =
Agent(e4, x3)

policeman.n.01(x3)

Another important trigger for implication conditions are superlatives.
An NP of the form the Yest Z is represented by asserting that a “Yer-than-
relation” holds between the discourse referent it introduces and every
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other Z. For example, for the sentence The happiest policeman sings:

x1 e2
policeman.n.01(x1)
x3

oliceman.n.01(x3)
(18) P =

—

happiest(x1, x3)

x1 =x3

sing.v.02.(e2)
Agent(e2, x1)

Disjunction conditions are used to represent alternatives as in A police-
man or a professor sings:

x1 e2 x3 e4

(19) policeman.n.01(x1) professor.n.01(x3)
sing.v.02(e2) sing.v.02(e4)
Agent(e2, x1) Agent(e4, x3)

Necessity and possibility conditions are usually triggered by modal verbs
as for example in Max must sing or Max cannot sing, respectively:

(20)

x1 e2

named(x1, Max)
sing.v.02(e2)
Agent(e2, x1)
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x1
named(x1, Max)
b. x1 e2
<& | sing.v.02(e2)
Agent(e2, x1)

A question condition is used to represent the meaning of (direct or in-
direct) wh-questions. Its first argument represents the restrictor of the
question, and its second, the nuclear scope. For example, for the ques-
tion which policeman with two children sings:

x1 x2

1 ptheman.n.Ol(xD o3
with(x1, x2) [ e v.02(x1)
child.v.02(x2) =
|x2|=2

The meaning of yes/no questions is not distinguished in our represen-
tation from that of the corresponding declarative sentences.

5.2.3 Projection Pointers

Our meaning representation language as presented so far lacks a prag-
matically and semantically important distinction: that between asserted
(or at-issue) content and that between projected (or not-at-issue) content
(Simons et al., 2010; [Ionhauser et al., 2013). Consider the following five
sentences:

(22) A policeman sings.

The policeman sings.

He sings.

John’s sister sings.

John, who has a sister, sings.

o oo o
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The main propositional content of each sentence is that somebody sings.
This is asserted content. In[(22-a)} asserted content is all there is: there is
a policeman, there is a singing event, and the former is the agent of the
latter. By contrast, in[(22-b)H(22-e)} the underlined part contributes pro-
jected content. All projected content is in some sense “background” or
“extra” information that is not what the sentence is “about” but which
nonetheless supports certain inferences we can draw from the sentence.
In the definite article carries a presupposition that a policeman
exists and is uniquely identifiable in the discourse context. In
the personal pronoun similarly requires that there is some male person
uniquely identifiable in context, to which it then refers. In the
possessive construction contributes the presupposition that John has a
sister. In[(22-e)} the non-restrictive relative clause contributes a conven-
tional implicature supporting the same inference.

The common defining characteristic of all projected content is that it
can survive unchanged when the whole utterance is embedded under
an entailment-canceling operator like negation, a conditional, a modal
or a question. Consider the negations of the above sentences:

(23) It is not the case that a policeman sings.

It is not the case that the policeman sings.

It is not the case that he sings.

It is not the case that John’s sister sings.

It is not the case that John, who has a sister, sings.

While none of support the same asserted inferences as ex-

amples the projected inferences of|(23-b)H(23-e)|are still sup-
ported by the most natural reading of [(23-b)H(23-e)t [(23-b)| still carries

the presupposition that a uniquely identifiable policeman exists,
still requires a uniquely identifiable male referent, [(23-d) and [(23-e)|still
support the inferences that John has a sister. The entailments of pro-
jected content are “projected” out of the local scope and therefore sur-
vive the entailment-canceling operator.

o a0 ow

To distinguish asserted from projected content, the GMB uses an
extension of DRT called Projective Discourse Representation Theory
(PDRT; [Venhuizen et al., 2013b). Each DRS in PDRT (PDRS) carries an
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arbitrary but unique label which by convention is written as a number,
and every discourse referent and condition carries a projection pointer,
which may or may not be the same as the label of a containing DRS. Ref-
erents and conditions representing asserted content have the same label
as the DRS in which they occur. Those representing projected content
have a different label, so as to indicate that they should be interpreted
in a different context. For example, [(22-a) are represented as fol-
lows:

(24) a. A policeman sings
1
1+x1 1<«+e2
1 + policeman.n.01(x1)
1 < sing.v.02(e2)
1 < Agent(e2, x1)

b. The policeman sings

2
1+x1 2<e2
1 < policeman.n.01(x1)
2 + sing.v.02(e2)
2 + Agent(e2, x1)

c. Hesings

2
1+x1 2« e2
1 + male.a.01(x1)
2 + sing.v.02(e2)
2 « Agent(e2, x1)
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d. John’s sister sings

3
1x1 2 x2 3+ ¢€3
1 + named(x1, John)
2 + sister.n.01(x2)
2 + of(x2, x1)
3 + sing.v.02(e3)
3 < Agent(e3, x2)
e. John, who has a sister, sings

3
1x1 2 x2 24e3 3+ ¢4
1 < named(x1, John)
2 + sister.n.01(x2)
2 + have.v.01(e3)
2 + Pivot(e3, x1)
2 < Theme(e3, x2)
3 «+ sing.v.02(e4)
3 < Agent(e4, x1)

5.2.4 The Syntax-semantics Interface

The GMB includes not only DRS annotations for English sentences but
also CCG derivations that relate sentences to the DRSs. That is, a com-
positional analysis is given where each word has a category and an in-
terpretation (cf. Chapter [2). Interpretations are \-PDRSs (Bos, 2009;
Venhuizen et al., 2013b). These are expressions that when combined
via CCG’s combinatory rules eventually combine into full PDRSs rep-
resenting the meanings of full sentences or texts. What the possible -
PDRSs for each word are depends, among other things, on its category.
In this section we present the most important kinds of interpretations
for the most important categories.

The interpretation of a noun (N) is a property, more specifically, a
function that takes a discourse referent and returns a PDRS with one
condition. For example, here is a possible interpretation for the word
book:
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25) Az

1 + book.n.01(x)

The interpretation of an attributive adjective (V/N) is a function from
properties to properties. For example, intersective attributive adjectives
apply the property that is the interpretation of the noun they are mod-
ifying to a variable standing for the eventual discourse referent and
merge the resulting DRS with another DRS which contains additional
conditions contributing the adjective meaning. A possible interpreta-
tion for big is thus:

1+e
1 < big.a.01(e)
1 + Themel(e, z)

(26) Ap.(Az.( + (pQx)))

The + operator denotes an assertive merge (Venhuizen et al., 2013b): the
inputs are two PDRSs. The output is one PDRS with the union of the
discourse referents and the union of the conditions of both inputs. The
label of the output PDRS is taken from the second input PDRS and is
also unified with the label of the first, so that assertive content stays
assertive. For example:

1 2

l+e 2 2¢e 2<+Xx
(27) T+ big.a.0l(e) + | 2«0z = [ 2+ biga0i(e)
1« Tﬁgérﬁe( ) 2 < book.n.01(x) 2 ¢ Theme(e, x)
oL 2 < book.n.01(x)

The interpretation of a noun phrase (/VP) is a generalized quantifier,
i.e., a function from properties to PDRSs. For example, the NP someone
takes a property, applies it to a discourse referent—allowing the prop-
erty to make predications about it—and finally merges the resulting
PDRS with a PDRS in which the discourse referent is introduced and
established as a person:
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28) (| l+=x + (pQz))
1 < person.n.01(x)

Determiners (NP /N) turn nouns (V) into noun phrases (NP), so their
interpretations are functions from properties to generalized quantifiers.
Since generalized quantifiers are functions from properties to PDRSs, a
determiner interpretation can also be seen as a function that takes two
properties p and ¢ and returns a PDRS that relates them in some way.
For example, the indefinite determiner a/an just introduces a discourse
referent, applies both properties to it and merges the resulting PDRSs:

1
29)  Ap.(Aq.( | 1<z | +((pQz)+ (¢Qz))))

By contrast, the universal quantifier every/each/all/any introduces an
implication condition where p serves as antecedent and ¢ as consequent:

1

(30)  Ap.(\g. 2 )
1« (|2«2x| 4+ (pQx))= (¢Qx)

Words that trigger presuppositions, anaphoric relations or conventional
implicatures use a different merge operation: projective merge (x). Pro-
jective merge is defined like assertive merge, except that labels are not
unified. Thereby, the contents of the first input PDRS become projected
in the output PDRS. For example:

5 2
1 P i A
(31) [1<= | = o 020 = 1 + policeman.n.01(z)
| 1+« policeman.n.01(z) | sing:v.J2le 2 + sing.v.02(e)

2 < Agent(e, x) 2 < Agent(c, )

One example of a lexical interpretation using projective merge is that of
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the definite article the:

1
(B2 Ap.(Ag.(( | 1= | + (pQx))* (¢Qx)))

Another is that of the pronoun she:

1
B3) Ap(|l+= * (pQux))
1 + female(x)

A third is that of the possessive suffix ’s:

1
(34) Ao.(Ap.(Aq.(0@Ay.(( | 1 = + (pQzx)) * (¢Qx)))))
1+ of(x, y)

The interpretation of a sentence (S[X] for some feature X) might be
expected to just be a PDRS. In fact, we represent it as a function from
properties to PDRSs. This way, they can be applied to an additional
property m to modify the event at the core of the sentence interpreta-
tion. For example, here is the interpretation of the sentence A policeman
sings:

1
l—z 1<e
(35)  Am.( | 1+ policeman.n.01(z) | + (m@Qe))
1 < sing.v.02(e)
1 < Agent(e, x)

Sentence modifiers (S\S or S/S) which semantically modify the event
exploit this mechanism by applying the sentence interpretation ¢ to a
property contributing the appropriate conditions—and return yet an-
other function from properties to PDRSs, for any further modifiers. For
example, here is a possible interpretation of the adverb happily:
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1«1
1 + Manner(e, t)
1 < happily.r.01(¢)

(36)  At.(Mm.(t@()e. + (m@e))))

Sentence modifiers that semantically modify the proposition expressed
in the sentence, e.g., intensional adverbs like allegedly, apply the sen-
tence interpretation ¢ to an empty property instead and embed the re-
sulting PDRS:

1+0p

(37)  At.(Am.( 1<_p:(t@mé) + (m@p)))

1 «+ allegedly.r.01(p)

Verb phrases (S[X]\NP for some feature X) are “sentences missing
a subject”, thus their interpretations are functions from NP interpre-
tations to sentence interpretations. Recall that NP interpretations are
functions from properties to DRSs. A VP interpretation thus applies
the subject NP interpretation s to a property, viz. one that contributes
the event, the semantic roles and any objects inside the VP. For example,
here is a possible interpretation of the VP sings:

(&
1 < sing.v.02(e)
1 < Agent(e, x)

(38)  As.(Am.(s@QAz.( + (mQe))))

Predicative adjectives (S[adj]\ NP) are analyzed like verb phrases.
For example, here is a possible interpretation of successful:
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1

e
1 + successful.a.01(e)
1 + Theme(e, )

39)  As.(Am.(s@Ax.(

+ (mQ@e))))

The interpretation of the copula ((S[X]\NP)/(S[adj]\NP) for some fea-
ture X) connecting subjects to predicative adjectives is just a wrapper
around that of the adjective. The same is true of auxiliary verbs like
the perfect have ((S[X]\NP)/(S[pt]) for some feature X') since we ignore
tense:

(40)  Av.(As.(Am.((v@Qs)@m)))

VP modifiers ((S\NP)\(S\NP)) are very similar to sentence modifiers,
they only need to “delay” the contribution of their content until after
combination with the subject. For example, here is the semantics of the
VP modifier in a tent:

12
1 + tent.n.01(x)
1+ in(e, x)

(41)  Av.(As.(Am.((v@s)@Ae.( + (mQe)))))

Figure[5.1|illustrates how the A\-DRSs and the combinatory rules in-
teract to produce sentence interpretations from word interpretations.

5.3 Token-level Annotation

Once a sentence is assigned its correct CCG derivation, and each word
is assigned its correct interpretation, the interpretation of the sentence
follows deterministically. Finding the correct CCG derivation depends
largely on assigning each token (word or punctuation mark) the correct
category, also known as supertagging or “almost parsing” (Srinivas and
Joshil, [1999; |Clark and Curran| 2007). Almost all annotation decisions
can thus be made at the token level, and this is what the annotation
methodology of the GMB focuses on.
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Before there are any tokens to annotate, they must first be identified
in the raw documents, which come as sequences of characters. Further-
more, the boundaries of sentences must be determined before parsing
can begin. This is done in segmentation, which we describe in Sec-
tion5.3.11

In choosing the correct interpretation for a token, there are many
variables to consider. As we have seen in the previous section, the A-
DRS of content words depends, for example, on their senses and the
semantic roles they assign to their arguments. As we will see, they can
also depend on the scope orders of their arguments. The interpretations
of function words do not follow from categories alone either, e.g., defi-
nite and indefinite articles have different interpretations; so do personal
pronouns, depending on their gender; and so on.

To make the multitude of variables to consider more manageable
both for human annotators and for the various natural-language pro-
cessing tools supporting them, we designed a tagging scheme with a
total of ten annotation layers, each of which can be annotated indepen-
dently of the others. Many of the layers correspond to established tag-
ging tasks, like part-of-speech tagging, supertagging or word-sense dis-
ambiguation. The tagging scheme was designed so that it contains all
the information required to choose the correct \-DRS automatically. It
was also designed so that the correct A-DRS for a token follows from its
tags alone, without looking at context. Where context is required for
making decisions, this has to be taken into account during tagging. We
describe the tagging scheme in Section

As an example of how token-level tagging can be used to anno-
tate complex semantic phenomena involving several tokens, we have
a closer look at the scope tagging layer in Section [5.3.3

5.3.1 Segments

Segmentation of text into tokens and sentences is widely regarded as
a solved problem. For languages written with spaces between words,
rule-based systems solve it with near-perfect accuracy for many appli-
cations. However, not all aspects of the task are trivial. Most notably,
periods have to be disambiguated based on context—they can termi-
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I don’t think New York is as supercali-
SOTITIIOTIIIIOTIIIIIIIOTIOTIOTIIIIIIIIOO
fragilisticexpialidocious as it used to
ITIITITIIIIIIIITIIIIIIIITIIIIOTIOTIOTIIIOTIO
be. But I still want to go there.
TITOSIIOTOTIIIIOTIIIOTIOTIOTIIIITO

Figure 5.2: Example of IOB-labeled characters, with two kinds of B-tags:
S for the beginning of a sentence, and T for the beginning of a token.

nate a sentence, but they can also just be part of an acronym. Similarly,
if units such as New York or in spite of are to be treated as a single to-
ken, considerable knowledge is required of the tokenizer. Rule-based
systems can only acquire such knowledge through careful writing and
testing of rules for each new language and domain (Silla Jr. and Kaest-
ner, |[2004). In the data-driven spirit of the GMB, a system was desired
that allows annotators to correct instances of mistakes in the data, and is
able to learn from them to treat other instances in the same way.

We approach the task as a character tagging problem following a
variant of the IOB scheme which is widely used, e.g., in chunking. The
first character in a token is assigned the S tag if it also starts a sentence,
otherwise T. Other characters that are part of tokens are tagged I. Char-
acters that are not part of a token, such as whitespace, are tagged 0
(Evang et al., 2013). An example of a text tagged in this way is shown
in Figure Compared to the more traditional approach of tokenizing
and sentence-segmenting a text by inserting /removing whitespace and
newlines, this one has a couple of advantages: it makes it unnecessary
to edit the text itself, ensuring that the original raw text is preserved. It
makes it straightforward to apply sequence tagging techniques to the
task. It allows for representing tokens that contain whitespace, such as
New York. Tokens that in the raw file are interrupted by artifacts such
as hyphenation, like supercalifragilisticexpialidocious, can be represented
by tagging the interrupting characters as 0 and then resume the token
with I.

We largely follow the segmentation scheme of the Penn Treebank
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token Mary  likes her lunch box

lexical category

part of speech NNP VBZ PRP$ NN NN

lemma mary  like her lunch box .
category N (S[dcl]\NP)/NP NP/N N/N N S\S

lexical meaning

named entity type PER

animacy HUM HUM CNC CNC
word sense like.v.01 lunch.n.01  box.n.01

contextual meaning

thematic roles [Stimulus, Experiencer]

other relations of for
scope neutral

co-reference 04

Table 5.1: An example sentence annotated on all tagging layers.

(Marcus et al., [1993), characterized by treating punctuation marks (ex-
cept word-internal hyphens) as independent tokens and splitting off the
possessive suffix 's and the n't in contractions such as won't as separate
tokens. We depart from the Penn Treebank scheme in annotating names
that have spaces in them, such as New York, as a single token.

5.3.2 Tags

Every token is annotated on a total of ten tagging layers. If a tagging
layer is not applicable to a token, the respective tag is the empty string.
An example of a sentence tagged on all ten layers is given in Table

Lexical Category Tokens are annotated for part of speech following
the tagging scheme of the Penn Treebank (Marcus et al., [1993) and for
CCG category following CCGbank (Hockenmaier and Steedman), 2007).
The lemma tagging layer contains the uninflected, lower-case forms of
each token.

Named Entity Type Proper nouns and demonyms are annotated for
the type of named entity they refer to: one of PER for person, GEO for
location, ORG for organization, TIM for times, (e.g., names of months
or weekdays), EVE for events (such as Katrina, the hurricane), ART for
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artifacts (e.g., names of products such as iPhone), NAT for natural phe-
nomena (such as H5N1, the virus) and GPE (geo-political entity) for
names of, e.g., countries where the name does not clearly refer to only
one of the location or the political organization. The tagging scheme is
loosely based on that of Sekine et al.|(2002) and described in more detail
in|Bos et al.[ (2017).

Animacy Nouns and pronouns are annotated with tags that indicate
whether they refer to animate or inanimate entities. Following the an-
notation scheme of|Zaenen et al.|(2004), animate entities are further sub-
divided into the classes HUM (Human), ORG (Organization), ANI (An-
imal), MAC (Machine) and VEH (Vehicle), and inanimate entities into
LOC (Place), NCN (Non-concrete), CNC (Concrete) and TIM (Time).

Word Sense To resolve word-level homography and polysemy, com-
mon nouns, verbs, adjectives and adverbs are annotated with a Word-
Net synset identifier.

Thematic Roles Thematic roles specify the semantic relation of a verb
(adjective, adverb) to its argument. We annotate them lexically follow-
ing the method proposed by Bos et al.|(2012): the head of the respective
construction (i.e., the verb, adjective or adverb) is annotated with a list
of roles, each indicating the role associated with the corresponding ar-
gument slot. For example, the verb likes has category (S\NP)/NP. Its
first argument slot is for the object NP (on the right), the second, for
the subject NP (on the left). The list of roles [Stimulus, Experiencer]
it is annotated with assigns the two arguments the roles Stimulus and
Experiencer, respectively.

Other Relations The annotation of other relations between a functor
and an argument similarly works by annotating the respective relation
on the functor, with the difference that there is only ever one relation per
functor in this case and therefore no list is needed. In our example, a
lunch box is a box for lunch, so the noun modifier lunch is annotated with
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the for relation, and the determiner her introduces an of (possessive)
relation.

Scope Similarly, scope, a relation between noun phrases, is not anno-
tated on the noun phrases themselves, but on the functors (like verbs
and prepositions) that take those noun phrases or phrases containing
them as arguments. We will have a closer look at this in the following
subsection.

Coreference The final tagging layer is for coreference. In our seman-
tic construction framework, coreference is not resolved during compo-
sitional construction of DRSs, but later as a post-processing step. The
coreference annotation of tokens thus does not affect the choice of lex-
ical interpretation for it. It purely serves as information for the post-
processing step. We annotate coreference on referring elements such
as pronouns by indicating the character offsets of the head word of a
noun phrase in the same coreference chain. In our example, the posses-
sive determiner her refers to Mary, a token that here is mentioned at the
very beginning of the document (start offset 0) and is four characters
long (therefore, end offset 4).

5.3.3 Quantifier Scope

Quantifier scope is among the most intensely studied phenomena in
formal semantics. Let us start with the observation that the sentence
Some student read every book has two distinct readings which do not seem
to stem from syntactic ambiguity (some student is the subject, read is the
verb and every book is the object in any case). The two readings, given
as PDRSs, are:

(42)  Some student read every book.
a. Subject wide scope
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1
1+ x1
1 < student.n.01(x1)
3
2 3+€3
1+ | 2+x2 = | 3 « read.v.01(e3)
2 < book.n.01(x2) 3 + Agent(e3, x1)
3 + Theme(e3, x2)
b. Object wide scope
1
3
2 3+x1 3+¢€3
3 < student.n.01(x1)
1+ | 2+x2 =
3 < bookn.01(2) 3 < read.v.01(e3)
— 3 + Agent(e3, x1)
3 < Theme(e3, x2)

In the first case, there is a single student who read every book, in the
second; every book was possibly read by a different student. In general,
with universally quantified noun phrases such as every student, the ques-
tion arises which of the discourse referents introduced by other noun
phrases should be introduced outside of the implication condition, as
x1 in|(42-a), and which should be introduced inside its consequent, as
x1 in|(42-b)l This is the problem of quantifier scope disambiguation (Hig-
gins and Sadock, 2003; Andrew and MacCartney, 2004; Srinivasan and
Yates, 2009; Manshadi and Allen, 2011). Quantifier scope can be for-
malized as an ordering relation between all noun phrases in a sentence,
where noun phrases with a higher rank outscope (i.e., introduce their
discourse referents at a higher position in the hierarchy of nested DRSs
than) noun phrases with a lower rank.

In research on semantic construction, many efforts have been di-
rected towards avoiding quantifier scope disambiguation, or at least at
keeping it out of the process of compositional semantic construction.
These efforts employ the strategy of quantifier scope underspecification,
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i.e., they construct underspecified semantic representations from which
fully specified semantic representations for all scope orders can be con-
structed later, if needed. Frameworks and formalisms for underspeci-
fication are presented for example in (Reyle, 1993; Bos), |[1996; Egg et al.,
2001} Copestake et al., 2005). These approaches essentially treat quan-
tifier scope as a non-compositional phenomenon that needs to be dealt
with at a higher level.

As Manshadi and Allen! (2011) point out, genuinely scope-ambigu-
ous sentences as in are a hallmark of the theoretical literature, not
so much of naturally occurring language. In context, it is usually clear
to a competent speaker which scope order is the correct one. For exam-
ple, in the following two sentences, any plausible reading would have
every member outscope the breast (because no two members can share the
same breast), and on the other hand the head outscope all UL.S. intelligence
agencies (because national intelligence is a single entity, which could not
be the same as multiple different entities).

(43) a. Finally the gorgeous jewel of the order, gleaming upon the
breast of every member, suggested “your Badgesty”, which
was adopted, and the order became popularly known as

the Kings of Catarrh. [GMB 72/ O696E]
b. Heis the former directory of national intelligence, the head
of all U.S. intelligence agencies. [GMB 59/0286]

For the GMB, it is thus neither necessary nor desirable to leave scope
order underspecified. Instead, fully resolved meaning representations
should be created. We thus investigated whether we could avoid the
complexity of underspecified representations in the first place and treat
scope compositionally, fully specifying it from the start. First, note that
in the syntax-semantics interface presented in Section the scope
order of NPs is determined by the functors taking them as arguments,
i.e., verbs and prepositions. For example, here are two possible inter-
pretations for the transitive verb read, one that has the subject outscope
the object (as in [(42-a)), and one that has the object outscope the sub-
ject (as in [(42-b)). The difference lies simply in the order in which the

2These codes indicate the GMB document ID the sentence is from, cf. Section
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generalized quantifiers that are the interpretations of the arguments are
applied.

(44) a. Transitive verb, subject wide scope

1
l<e
Ao.(As.(Am.(sQAz.(0@Ay.( | see.v.01(e) + (m@Qe))))))
Experiencer(e, x)
Stimulus(e, y)

b. Transitive verb, object wide scope

1
l+e
Ao.(As.(Am.(0@QAy.(s@Az.( | see.v.01(e) + (m@Qe))))))
Experiencer(e, x)
Stimulus(e, y)

The interpretations of these functors should then be all that needs to be
modified to obtain the desired readings.

To test whether this conjecture holds true in practice, we examined
the data in the GMB (release 2.1.0). A pilot study showed that verb
objects only rarely clearly outscope their subjects (12 of 206 instances
involving a universal quantifier). We therefore focused on scope in-
teractions mediated by prepositions. Using the syntactic annotation of
the GMB, we extracted all prepositions heading a verb phrase or noun
(phrase) modifier where either the object or the modified constituent
contains one of the universally quantifying determiners every, each and
all. We discarded prepositions that head verb arguments (PP /NP) be-
cause here it is the verb that mediates the scope. We discarded preposi-
tions whose object is clausal as in With all ballots cast, people are awaiting
the results. We also discarded prepositions that are part of fixed expres-
sions such as in all, at all, as well as the of in all of the leaders, which we
regard as part of the determiner. Finally, we cast aside the prepositions
including, excluding and except as deserving special treatment not within
the scope of this work.

This left us with 456 instances, which were annotated by one anno-
tator for scope: should the universal quantifier have wide scope or nar-
row scope to get the correct reading, or doesn’t it matter (e.g., because
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Table 5.2: Scope interaction mediated by verb phrase modifying prepo-
sitions.

Vin Vscope example #

obj wide  Jobs grew in every sector except manufacturing, with 57
much of the growth due to hurricane clean-up efforts

in Florida. [GMB 97 /0059]
obj narrow Responsibility for Africa is currently fractured under 11
all three. [GMB 90/0450]

obj neutral The preferred stock, which would have a dividend 3
rate of $ 1.76 a year, would be convertible into Heritage
common at a rate of four common shares for each preferred.
[GMB 38/0686]

att  wide  NATO says militants surrounded the outpost, firing 25
from all directions with rocket-propelled grenades, small
arms and mortars. [GMB 92/0311]

att narrow Opening batsman Jamie How led all scorers with 88 17
runs as New Zealand reached 203-4 in 42.1 overs.
[GMB 13/0199]

att neutral The program airs in 40 countries worldwide, 52
and every Idolwinner records through Sony BMG.
[GMB 75/0494]

the other phrase is a definite which is interpreted globally)? In cases of
doubt, we preferred annotations resulting in the logically weaker read-
ing. For example, in we could assume potentially distinct termi-
nation events for each banking license or a single termination event for
all of them, and we prefer the former by giving the universal quantifier
wide scope.

(45)  the International Banking Repeal Act of 2002 resulted in the ter-
mination of all offshore banking licenses [GMB 03/0688]

Table |5.2| shows the results of the annotation for verb phrase mod-
ifiers. We distinguish the following cases: the universal quantifier can
occur in the modified verb phrase or in the object of the modifying
preposition. In each case, it can take either wide scope (i.e., outscope



5.3. Token-level Annotation 105

the other constituent) or narrow scope (i.e., be outscoped by it). If the
modified constituent outscopes the modifier, we call this non-inverting
scope and annotate the preposition with the noninv tag. Its interpreta-
tion then takes the following shape:

4
(46) Ao.(Av.(As.(Am.((v@Qs)@Xe.(0@Az.( + (m@Qe)))))))
4 + <rel>(e, 2)

The desired reading is thus obtained, as exemplified in Figures [5.3|and
o

If the modifier outscopes the modified constituent, we call this in-
verting scope and annotate the preposition with the inv tag. Its inter-
pretation then takes the following shape, applying the interpretation of
the object at a higher level:

3
(47) Ao.(Av.(As.(Am.(0@Az.((v@s)@Ae.( + (m@e)))))))
3« <rel>(e, 2)

The desired reading is thus obtained, as exemplified in Figures [5.5|and
5.6

Table shows the results of the annotation for the noun (phrase)
modifiers. Again, we distinguish cases by whether the modified con-
stituent or the object of the preposition contains the universal quanti-
tier, and by whether that takes wide scope. In the cases of non-inverting
reading, i.e., where the modified constituent outscopes the modifier, we
annotate the preposition with noninv. We obtain the desired interpre-
tation by treating the preposition as noun-modifying, giving it category
(N\N)/NP, and an interpretation of the following shape:

2
(48)  Mo.(Ap.(A\z.((pQz) + (0@\y. ))))
2 + <rel>(z, y)

Examples are shown in Figures[5.7/and
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Figure 5.3: Narrow-scope universal in VP modifier.
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grew in every sector
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= (@@
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S[Ael]\ NP :xs.0m. 5 3 )
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5 + sector.n.02(z) 3 + Theme(e, x)
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Ao

3
3«2z 3+e
3 « position.n.06(z)
3 « originate.v.01(¢)
3 < Theme(e, z)
3 «in(e, 2)

‘m.ﬁQO: Am.

5 + sector.n.02(z)

Figure 5.5: Wide-scope universal in VP modifier.
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Table 5.3: Scope interaction mediated by noun (phrase) modifying
prepositions.

Vin Vscope example #

obj wide  Finally the gorgeous jewel of the order, gleaming 115
upon the breast of every member, suggested “your
Badgesty,” which was adopted, and the order be-
came popularly known as the Kings of Catarrh.
[GMB 72/0696]

obj narrow He is the former director of national intelligence, the 44
head of all ULS. intelligence agencies. [GMB 59/0286]

obj neutral He said methods such as abortion do not fight 1
poverty or help a country’s development but actu-
ally constitute “the destruction of the poorest of all hu-

man beings.” [GMB 13/0428]
att  wide  Allsuchattacks by drone aircraft are believed to be car- 32
ried out by U.S. forces. [GMB 76/0357]

att narrow The official Xinhua news agency says all 28 workers 16
in a mine in northwestern Shaanxi province died when
an underground cable caught fire on Saturday night.
[GMB 40/0608]

att  neutral It tacitly encouraged Iraq’s minority Sunni Muslims 83
to vote, saying all segments of the Iraqi people must go
to the polls. [GMB 52/0038]

If the modifier contains a universal quantifier that outscopes the
modified constituent, the discourse referent introduced by the latter
must appear within the consequent of the implication. We achieve this
by treating the preposition as noun-phrase-modifying, giving it category
(NP\NP)/NP and an interpretation of the following shape:

2
49)  Xo.(Aa.(Ap-(0@QAy.(a@\z.( + (p@x))))))
2 « <rel>(z, y)

An example of how the desired interpretation is derived is shown

in Figure 5.9}
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head of all agencies
N: (N\N)/NP: NP:
1 2 3
Ar. 20.0p. (0. () + (0N )
- -
’ o
0
>
N\N:
3
Ap.(Az.((pQzx) + 4 2 )
3¢ [4«y | = | |
[ 4 + agency.n.01(y) | [ 2 of(z,y) |
<0
3
N 3 ehead,n.04(1r)4 ,
3¢ [4«y | =
| 4 < agency.n.01(y) | [ 2« of(z, y) |

Figure 5.7: Narrow-scope universal in noun modifier.

One might expect the same strategy to work in the case of narrow-
scope universals in the modified noun phrase, but this is unfortunately
not the case. Recall the general form of universally quantified NPs, e.g.,
all workers:

(50) Ap. 2
1+ | 2«7z = (pQx)
2 + worker.n.01(x)

The consequent of the implication can be determined by applying the
NP to a suitable predicate p, however, the antecedent cannot be modi-
tied. This is what we would need to do in order to quantify over work-
ers in a specific mine as in all workers in a mine in Shaanxi. We could
get the required “in” relation condition into the antecedent by treating
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all attacks by drones

NP/N: N: (N\N)/NP: NP:

1 2 4 5
Ap.(Ag.( + ((p@z) + (¢@z))))  Az. Xo.(Ap.(Az.((p@z) + (0@Ay. [ 1) A [5ex |+ (pax))
] T haa] [5« dronen0i() |
0
>
N\N:
5
Mp O (pa) + 2 )
PAAL-(PEY 5« by(z, y)

5 < drone.n.04(y)

< 0
5
5y
N ‘Az, | 5« attack.n.01(z)
5 < by(z, y)
5 «+ drone.n.04(z)
> 0
1
5
NP CAp. 5y
1+ | 5+« attack.n.01(z) = (p@x)
5« by(z, y)
5 <+ drone.n.04(zx)

Figure 5.8: Wide-scope universal in NP with noun modifier.

the modifier as a noun modifier, but then the discourse referent for the
mine would be introduced there too, failing to capture the reading that
it is a specific mine that all workers were in. Thus, in this case, con-
trolling scope via the prepositions that mediate it is not enough, and
our syntax-semantics interface has to be adapted further to cover these
cases.

Another limitation occurs when an NP A outscopes an NP B and is
outscoped by NP C, where B and C both occur in the same constituent
which A is not part of. We found only a single example of this in our
data:

(1)  Members of an Islamic alliance and other parties took to the streets
Saturday in all major cities and towns, where speakers denounced
General Musharraf for breaking his promise. [GMB 50/0210]
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leaders of all states
NP: (NP\NP)/NP: NP:
1 2 4
A +(par))  Ao.(Aa.(p(0@ry.(a@ha( [ | +(p@x)))
o 5
4 [5y (q@y)
0
>
NP\NP:
4
Aa.(Ap 5 2 )
4e = (a@Aa.( + (paz)))
5 < state.n.04(z) 2 + of(z, y)
<0
4
. 2
NP Ap. 5 -
4 = +(par))
2+ leadern.01(z) p=
de
2 + of(z, y)

Figure 5.9: Wide-scope universal in NP modifier.

Here, all major cities and towns should outscope Members because differ-
ent members presumably took to the street in each town. However, it
should be outscoped by an Islamic alliance because that is presumably
the same alliance across all towns. Our syntax-semantics interface so
far unfortunately cannot represent this reading.

Of all the examined instances of quantifier scope mediated by prepo-
sitions, these problematic cases form only a relatively small part; 96%
can be handled with our current framework. Future work to enhance
it may draw inspiration from (Steedman, |2012). There, existentials are
analyzed as skolem terms whose scope is controlled by where in the
derivation an operation called skolem term specification occurs. A vari-
ant of this analysis could be developed for PDRT, and skolem term spec-
ification could be controlled by associating it with specific argument
slots, similar to our lexicalized annotation of semantic roles.
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Table 5.4: Subcorpora of the GMB (development version) and their
sizes, as of July 2016.

Subcorpus Genre Documents Sentences Tokens
Voice of America newswire 9,208 57,191 1,228,556
CIA World Factbook  almanac 514 4,430 111,925
Aesop’s fables fable 223 944 23,016
Jokes humor 122 445 7,552
MASC misc. 35 291 6,964
Total 10,103 57,191 1,228,556

5.4 Building the Groningen Meaning Bank

5.4.1 Data

To ensure wide and uncomplicated availability of the GMB, it was de-
cided to place the annotations in the public domain, and that only docu-
ments should be included whose copyright status and license terms per-
mit their free redistribution. A variety of genres should be included and
the focus was to be on English prose, as other languages or forms such
as transcribed speech or dialogue would have exceeded the scope of the
annotation scheme, the available processing tools and the project. With
these criteria, a total of 73,352 plain-text documents were collected from
the Web siteshttp://www.voanews.com http://www.aesopfables.com
and http://www.basicjokes.com as well as from the CIA World Fact-
book (Central Intelligence Agency, |2006) and the Manually Annotated
Subcorpus of the Open American National Corpus (Ide et al., [2010).
Over the course of the project, new documents from this collection were
periodically included in the GMB after reviewing them for whether they
meet the criteria—filtering out, for example, documents with extensive
dialogue or artifacts from Web crawling. The result is a corpus of over
one million tokens in five subcorpora with different prose genres, as
shown in Table 5.4

The GMB is divided into 100 parts (00-99). Each part is represen-
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Figure 5.10: Graphical representation of the workflow for annotating
the GMB. At the bottom, each tool output is corrected using any avail-
able Bows before being sent into the next tool. The resulting derivations
are fed back into Explorer and Wordrobe to solicit more annotations
from experts and the crowd. Icons adapted from Thomas Helbig/The
Noun Project.

tative of the whole corpus with respect to the relative sizes of the sub-
corpora as measured in documents. Each document is identified by a
six-digit identifier starting with the part identifier. For example, docu-
ment 16/0690 is the 690th document within part 16.

5.4.2 Human-aided Machine Annotation

The process of annotating the GMB takes place in a bootstrapping fash-
ion: the raw text is first processed by a natural-language processing
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toolchain to produce a complete, but not necessarily fully correct first
annotation. This annotation is then gradually improved using human
annotation decisions. At the core of this workflow is the toolchain de-
picted at the bottom of Figure The toolchain currently consists of
the following tools:

e The statistical tokenizer and sentence boundary detector Ele-
phant. The Elephant text segmentation software (Evang et al
2013) was initially trained on a small portion of gold standard
data. Manual corrections to its output (see below) make the avail-
able amount of manually segmented text grow, and it is periodi-
cally retrained on this in order to learn new abbreviations or other
tricky segmentation cases.

e Various sequence taggers. There are five taggers which label in-
dividual tokens. For POS tags, we use the part-of-speech tag-
ger included with the C&C parser (Curran et al., 2007), trained
on CCGbank (Hockenmaier and Steedman, 2007). Morphologi-
cal analysis is done with morpha (Minnen et al.,2001) providing
the lemma for each token. Named-entity tagging is done with the
named-entity tagger included with the C&C tools, trained on the
MUC data (Curran and Clark, 2003b). Animacy classification of
nouns is done using the system of Bjerva (2014). For the rest of
the token-level annotation decisions, we rely entirely on heuristic
rules in Boxer (see below) and human annotation decisions.

e The C&C syntactic parser. The C&C parser is trained on CCG-
bank and produces CCG derivations without interpretations.

o The semantic construction system Boxer. Based on the output of
the taggers and of the parser, Boxer (also included with the C&C
parser) assigns each token a A\-DRS and outputs the resulting CCG
derivations with interpretations. Where annotation is still missing
for some layer, Boxer makes heuristic choices. For example, for as-
signing a semantic role list to a verb, Boxer uses a most-common-
rolelist baseline per category.
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Every component of the toolchain can, of course, make mistakes,
which should then be corrected by human annotators. This poses the
question how human annotation decisions should be integrated with
the output of the toolchain. It is not sufficient to correct a mistake in
the output of some tool (say, the part-of-speech tagger) once. The next
time a mistake at an earlier stage of the toolchain (say, tokenization) is
corrected, the part-of-speech tagger must be re-run because it depends
on the output of the tokenizer, and the correction to the output of the
part-of-speech tagger would be lost.

Our solution is to not conceptualize human annotation decisions
as changes or corrections, but as facts or constraints that are permanently
stored independently of the tool outputs and can be automatically ap-
plied and re-applied as needed to produce a full corrected annotation
at each layer. We call these constraints “Bits of Wisdom” (Bows). The
GMB uses two types of Bow:

e A segmentation Bow is a pair (I, tag) where [ is a character offset
into the raw text, and tag is one of {I, O, T, S}, indicating the tag
of the character immediately following the offset.

e A tag Bow is a 4-tuple (I, r, layer, tag) where [ and r are character
offsets in the raw text, indicating that the token that starts at / and
ends at r should be tagged on layer layer (e.g., layer = pos) with
the tag tag (e.g., tag = NNS). In the rare event that there exists no
token between the given offsets because tokenization has changed,
the Bow is ignored.

Because of their use of character offsets, Bows are instances of stand-
off annotations. Each Bow is permanently stored in a relational database
along with meta-information, such as its source, its creation time and
the ID of the document it applies to. Bits of wisdom are the common
currency that enables wisdom from very different sources to be accu-
mulated in the GMB in order to obtain the best possible annotation qual-
ity. The GMB uses four sources of Bows:

1. The wisdom of experts. Linguistically trained annotators can use
the wiki-like Web interface of the GMB to make annotations. The
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Figure 5.11: GMB Explorer, the Web interface of the GMB. At the top, there are navigation controls
and filters. Different views are provided on the selected document. The “sentences” view is currently
selected, showing the derivation of each sentence including token-level tags. Several annotation layers
are visible and editable.
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Figure 5.12: Wordrobe during a round of the Senses game, soliciting
word sense tagging decisions from the player.

Web interface is called GMB Explorer (Basile et al., 2012a), ac-
cessibleathttp://gmb.let.rug.nl/explorer/and shown in Fig-
ure[5.11} Toits users, the annotation process is presented as editing
an annotated document, close to the traditional annotation pro-
cess. However, behind the scenes, their edits are converted into
sows and fed back into the toolchain when they click the “Save”
button. Experts in the GMB team can also use scripts to add batch
Bows, addressing systematic mistakes and inconsistencies. An-
notations by external contributors are monitored for quality and
reverted if necessary.

2. The wisdom of the crowd. Many annotation decisions are crowd-
sourced via games with a purpose in which non-linguists collectively
create Bows. To this end, we developed a collection of games called
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Wordrobe, shown in Figure In a playful manner, it solicits
annotation decisions about part-of-speech, word senses, named-
entity types, coreference, information status, compound relations,
animacy and semantic roles. Bows are automatically generated
from questions with high agreement among player answers (Ven-
huizen et al., 2013a)).

3. The wisdom of others. One subcorpus of the GMB, MASC, has al-
ready been released with linguistic annotations by others. The re-
leased annotations were converted to Bows and added to the GMB.

4. The wisdom of machines. External NLP tools can be used even
without integrating them into the toolchain, by running them on
the documents and converting their output into Bows.

All Bows are stored in the database and applied to the output of the
respective tool every time the toolchain runs, as shown in Figure[5.10} A
re-run of the toolchain for a document is triggered automatically when
anew Bow for it is added, ensuring that the development version acces-
sible via GMB Explorer always reflects the latest changes. Since Bows
come from different sources with varying reliability, they may conflict.
The Bow application scripts therefore take the role of judge components
that adjudicate between a set of conflicting Bows and decide which one
to apply, if any. The adjudication strategy used for the GMB is as sim-
ple as discarding crowd and batch Bows if they conflict with another
existing Bow, and applying the most recent remaining sow.

5.5 Results and Comparison

The current development version of the GMB comprises over 10,000
documents with over a million tokens. It contains the automatic an-
notation, improved by a total of over 170,000 Bows (not counting those
overridden by conflicting sBows). This corresponds to roughly 1 sow in
8 tokens. As Figure shows, the majority of Bows (120,340) were
created by in-house expert annotators using scripts to fix systematic er-
rors and inconsistencies. Another 42,142 sows were created fully manu-
ally. 4,562 Bows so far have been aggregated from player answers in our
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expert, expert, crowd others total
manual batch

tokenization 4,469 20,962 0 0 25431
part of speech 10,634 6,725 0 6,344 23,703
lemma 804 18,234 0 0 19,038
category 405 0 0 0 405
named entity type 14,769 74,419 647 0 89,835
animacy 1,427 0 0 0 1,427
word sense 483 0 2,012 0 2,495
thematic roles 23 0 0 0 23
other relations 476 0 675 0 1,151
scope 871 0 0 0 871
co-reference 7,781 0 1,228 0 9,009
total 42,142 120,340 4,562 6,344 173,388

Figure 5.13: Active Bows in the GMB by type and by source.

crowdsourcing application, Wordrobe. Finally, the part-of-speech an-
notation from MASC makes for another 6,344 sows. Work in progress
is dedicated to creating a gold-standard portion of the GMB that has
been fully checked by human annotators. There is also work on using
the added annotations to retrain the toolchain and improve automatic
annotation results in a bootstrapping fashion (Weck, 2015).

To date, the GMB has been used in a number of research works on
semantic parsing (Le and Zuidema, 2012; Beschke et al.,2014), studying
quantifier scope (Evang and Bos| 2013) and natural language generation
(Basile and Bos} 2013). Another way it helps research on semantics is
the semantic lexicon interface of GMB Explorer, which displays the list
of lexical interpretations as well as counts and lists of their occurrences
and co-occurrences with specific lexical categories, part-of-speech tags
and named-entity tags. This interface can be used to find examples of
specific linguistic phenomena, to gauge their frequencies and thus to
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frequency semantics categories POS tags NE tag (frequency) lemma (frequency)
v
Sl 2 all) 3
22302 AV0. VL V2. 1 @ M3, (0 @ Wva. (6 i e® ) (SIbI\NP)/NP (11048), VB (11253), O (22281), O be (975), take (634), hold details
STEHMACes) S[ng]\NP)/NP (6054 VBG (6099),  (15), Time (2), Person 458), carry (404), discuss
Agent(e6, v3) (S[DLI\NP)/NP (4732), VBN (4942),  (2), Location (2) 347), end (328), face (306),
\Lheme(eony$) S[dcII\NP)/NP (201), VBD (6), POS arrest (277), seek (265),
S[b]\NP)/S[qem] (93), (1), NNS (1 reach (226).

(S[pt)\NP)/S[em] (79),
S[b]\NP)/S[em] (40),
S[ng]\NP)/S[em] (39),
S[ng]\NP)/S[gem] (6),
(S[pss]\NP)/S[em] (4).

3859 WO AL W2, (V1 @ W3. (v0 @ v (| 6 (2 @) ))) (SIbINP)/NP (2215), VB (2225),  0(3859) have (429), raise (204), set  details
EHRAED)] (SIng]\NPYNP (1012 VBG (1012 196), join (192), improve
Agentie6, v3) S[DtI\NP)/NP (585), VBN (616), 182), strengthen (108),
RALECS, ) S[dCII\NP)/NP (47 VBD (4), NN destroy (105), expand (98,

a,ina close (88), change (76;

919 AO. AL AV2. (V1 @ W3. (V0 @ Ave. ([ &6 (2 @@ ) (SIb1\NP)/NP (470), VB (472), 0(919 develop (249), form (164 details
ATEAAE) S[nal\NP)/NP (290), VBG (290), open (121), issue (98), break
Theme(eb, v3) S[DLI\NPY/NP (151), VBN (157 86), spread (40), steal (26
Location(spave) S[dcINPYNP (5), settle (26), stem (20), grow

SIpssINPYNP (3 17)...

Figure 5.14: Excerpt from the semantic lexicon showing the most fre-
quent entries for category (S[dcl]\NP)/NP.

prioritize efforts for further annotation tool development. For exam-
ple, Figure shows the three most frequently used semantic lexical
entries for category (S[dcl]\NP)/NP as displayed in this interface.

Several other broad-coverage resources of English texts annotated
with formal meaning representations (“sembanks”) have been released
in recent years, to wit Le Petit Prince in UNL (Martins, 2012), the Tree-
bank Semantics Corpus (Butler} 2015), the UCCA corpus (Abend and
Rappoport, 2013) and AMRbank (Banarescu et al., 2013)E] Each comes
with its own meaning representation language and all differ in which
aspects of meaning are captured. We highlight some of these differences
in the following.

Anchoring In the Treebank Semantics corpus and in the GMB, the
possible meaning representations for a sentence are constrained by the
surface form of the sentence. Each meaning representation is based on
and explained by a syntactic analysis of the sentence, rather than be-

% LinGO Redwoods (Oepen et al) 2002), DeepBank (Flickinger et al., [2012a),
ParDeepBank (Flickinger et al.}[2012b) and ParGramBank (Sulger et al.,2013) may be
considered sembanks, too, because they include Minimal Recursion Semantic repre-
sentations which are somewhat “deeper” than syntactic phrase structure trees or de-
pendency graphs. However, since they only treat “compositional” aspects of meaning
in the sense of Bender et al.| (2015), and not, for example, word senses, we classify them
as a syntactic resources for the present purpose.
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ing created by annotators “from scratch”. Advantages are that it allows
to automate more of the annotation process, may lead to more consis-
tent representations and provides a richer starting point for building se-
mantic parsers. The disadvantage is that meaning representations are
limited by the capabilities of the syntax-semantics interface used. For
example, syntactically unusual constructions that may have straightfor-
ward semantic representations cannot be so annotated if, say, the lex-
icon and the grammar are not prepared to deal with them. UNL and
AMR opt to be agnostic about how strings and meaning representa-
tions are related, and create the latter independently from the former.
UCCA is an interesting hybrid. On one hand, its meaning represen-
tation graphs are created by annotators without being constrained by
a grammar, and they do not correspond to constituents but to seman-
tic objects such as scenes or participants. On the other hand, the leaves
of each graph are the nodes of the sentence, and they are either used
to represent concepts/relations or they are explicitly marked as purely
functional elements.

Concepts All the resources except the UCCA corpus represent the
meanings of content words using concepts of some ontology—an im-
portant aspect considering the polysemy and synonymy found in natu-
ral language. UNL, Treebank Semantics and GMB use WordNet senses.
AMR uses a mix of English words, Wikipedia URLs and framesets from
PropBank (Palmer et al., 2005). UCCA does not represent concepts on
its foundational layer, although its formalism allows for adding them
on higher layers in the future.

Roles Similar to concepts, semantic roles are important for captur-
ing semantic commonalities between different forms, e.g., the seman-
tic equivalence of the sentences “Mary was kidnapped by pirates” and
“Pirates kidnapped Mary”. Again, UCCA does not represent roles on
its foundational layer, although its formalism allows for adding them
in the future. All other resources have their own custom inventory of
roles, with the GMB heavily drawing on VerbNet/LIRICS and AMR, on
PropBank.
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Semantic Normalization Useful semantic equivalences can hold be-
tween constituents of different types, e.g., between the noun phrase
Sam’s destruction of the city and the clause Sam destroyed the city. This
becomes especially clear when one attempts to find a single meaning
representation for a set of sentences in different languages which are
translations of each other, as the way things are expressed syntacti-
cally often changes in translation. AMR is unique in that it actively
tries to resolve such categorially different syntactic forms to the same
meaning representations, representing meaning of content words with
frames wherever applicable. By contrast, through their use of Word-
Net synsets, UNL, Treebank Semantics and GMB are committed to a
representation that represents noun, verb, adjective and adverb mean-
ings through distinct sets of concepts, retaining a certain amount of de-
pendency of the meaning representation on “syntactic idiosyncrasies”
(Banarescu et al., 2013). In the case of the GMB, two broad strategies
could be employed to overcome this problem in the future: i) adopting
a common set of concepts for verbs, adjectives, event nouns, relational
nouns, etc., similar to AMR, ii) recognizing equivalences through rea-
soning, with world knowledge axioms a la Ovchinnikova (2012). UCCA,
again, is a special case: as discussed, its foundational layer does not map
content words to concepts at all. However, it strongly supports cross-
categorial semantic normalization because its meaning representations
are organized around scenes (similar to frames) which can be anchored
to any part of speech.

Depth The meaning representations of Treebank Semantics and the
GMB come with explicit model-theoretic interpretations and can be con-
verted to first-order logic formulas, enabling approaches to natural lan-
guage understanding that are based on automated reasoning. Although
conversion procedures could be invented for UNL, UCCA and AMR,
these were not designed with such a goal in mind. In particular, they do
not explicitly represent “deep” aspects of meaning like universal quan-
tification or not-at-issue content (handled in the GMB as projected con-
tent).
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Gold Standard Le petit prince in UNL, the UCCA corpus and AMR-
bank all take the usual route of releasing only annotations that have
been created or checked by humans—a gold standard. In the Treebank
Semantics corpus and all GMB releases to date, annotations are only
silver-standard quality, improved by more human annotation decisions
from release to release, but no portion yet fully corrected on all annota-
tion layers.

5.6 Conclusions

We have described the Groningen Meaning Bank (GMB), an effort to
build a large-scale corpus of English texts annotated with deep meaning
representations. We argued that “human-aided machine annotation” is
needed to build a corpus of such size and depth of annotation, and that
the bits of wisdom approach is an effective framework for combining the
knowledge of machines, human experts, human non-experts and exter-
nal resources. We also showed that even phenomena traditionally dealt
with at a non-lexical level, in particular quantifier scope, can largely be
treated with a fully lexicalized mode of annotation.

It is probably fair to say that in comparison to other semantic anno-
tation efforts, the GMB employs the “deepest” meaning representation
formalism, with a detailed representation of, e.g., universal quantifi-
cation and not-at-issue content. It is an especially rich resource also
because the text-meaning pairs are anchored in explicitly given CCG
annotations, and many additional layers of annotation are explicitly in-
cluded. On the other hand, the GMB is further from the goal of pro-
ducing fully gold-standard data than most comparable projects, which
limits its usefulness as training and testing data for machine learning.

We conclude that although the “human-aided machine annotation”
approach is useful for rapidly developing a complex annotation formal-
ism and methodology, and testing it on large amounts of data, addi-
tional focused human annotation efforts will be required for obtaining
large amounts of gold standard data. In the meantime, there is a trade-
off between logical depth, dataset size and gold standard quality.

The GMB focuses exclusively on English. If other languages are to be
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annotated with deep meaning representations, does one have to make
a new corpus from scratch? Or can parts of the existing annotations
be reused for other languages? The latter may be possible if we can
automatically project CCG derivations from one language to another.
We will investigate this in the next chapter.



Chapter 6

Derivation Projection Theory

6.1 Introduction

We now turn to the goal of creating broad-coverage semantic parsers
for arbitrary target natural languages with cross-lingual supervision.
Specifically, the only training data we wish to assume access to is par-
allel data, pairing target-language sentences with translations in the
source language, where source-language sentences have already been
semantically parsed and word-aligned with the target-language sen-
tences.

For now, we will assume that the source-language semantic parsing
and word alignment has gold-standard quality, for example as the result
of an annotation process as described in Chapter[5} In Chapter[7, we will
explore the possibility of doing this automatically, requiring the method
to be robust to noise.

6.1.1 Cross-lingual Semantic Annotation

To train a target-language semantic parser, we need the target-language
sentences to be annotated with meaning representations. If the sentence
pairs in our parallel corpus have the same meaning, we can just copy the
meaning representation from the source side to the target side. Given
that the sentences are translations of each other, the assumption that
they have the same meaning should be justified in general.

127
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Of course, there are exceptions. Sometimes, one sentence is more
specific than another. For example, the English word player may be
translated with the German word Fufballspieler (literally: soccer player).
Other times, the translation is both more and less specific. For example,
for the phrase a pint of beer, the German translation ein Glas Bier (liter-
ally: a glass of beer) is more specific with respect to the material, but less
specific with respect to the size of the container. Bos| (2014) calls these
types of divergent translations informative translations and loose transla-
tions, respectively. We ignore them in this chapter and treat them as an
additional source of noise that our eventual system will have to deal
with robustly.

An additional source of divergent meanings may be idioms, if rep-
resented literally. For example, kick the bucket and the German den Ldffel
abgeben (literally: to surrender the spoon) are perfectly adequate trans-
lations of each other, although their “literal” meanings are completely
different. Ideally, the meaning representation should abstract from the
literal meaning and only contain the metaphorical one, e.g., using the
WordNet sense die.v.01. However, in practice, many annotation method-
ologies and semantic parsers are not yet able to do this, so this is another
issue we have to be aware of and deal with when using source-language
meaning representations to train target-language semantic parsers.

6.1.2 Cross-lingual Grammar Induction

In order to get a target-language semantic parser, we also need some
form of grammar for the target language. As seen in Chapter (3| some
narrow-domain semantic parsers are able to induce grammars with few
prior assumptions about the target-language syntax. This would be
ideal for our goal of being able to process arbitrary target languages
without prior knowledge about them. Unfortunately, to the best of our
knowledge, such methods have not been shown to scale to broad-co-
verage tasks. All broad-coverage semantic parser learners we know of
make use of an existing, explicitly supervised syntactic parser for the
target language (cf. Section[3.7).

Our proposed solution to this problem is to transform the existing
source-language parses into parses for the target-language translations
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automatically. That is, we would like to automatically create a parallel
treebank, from which a target-language grammar can be read off.

Of course, every language has a different grammar. Can the source-
language parses possibly contain any useful information about what
the target-language parses should be like? Indeed, there is precedent
to suggest that this should be the case, viz. the success of (manually
built) parallel grammars like ParGram (Butt et al., 2002) and (manually
built) parallel treebanks like ParGramBank (Sulger et al.,[2013). An ex-
plicit aim of these projects is to assign sentences which are translations
of each other analyses that are as similar as possible and as different as
necessary. To do this, they use Lexical Functional Grammar (LFG; Bres-
nan, 2001} |Dalrymple, [2001), which is designed around a version of the
Universal Grammar hypothesis (Chomsky, 1988, (1995), namely that “all
languages are structured by similar underlying principles” (Butt et al.,
2002). An LFG analysis of a sentence consists of an f-structure, which
is meant to encode language-independent aspects of a sentence’s struc-
ture such as predicate-argument structure and statement type, and a c-
structure, which encodes language-specific aspects such as word order,
constituency or morphological vs. syntactic structures. Grammars con-
sist of a mapping from sentences to c-structures and a mapping from
c-structures to f-structures. Thus, in ParGramBank, to a large extent,
f-structures are identical between translations.

The success of such “maximally parallel” grammars and treebanks
suggests it may be possible to transfer the language-independent as-
pects of an analysis from a sentence to its translation, and discover the
language-specific aspects automatically, learning them from the data.
In this chapter, we address the question if, and how, this can be done,
by proposing a series of algorithms to this end, each more capable than
the previous, and discussing their capabilities and limitations.

We base our method on Combinatory Categorial Grammar mainly
for three reasons. First, our existing tools for parsing text into Discourse
Representation Structures are based on CCG, so we could then reuse
them for cross-lingual semantic parsing. Secondly, CCG’s close cou-
pling of syntax and semantics makes the integration of meaning rep-
resentations into the projection process straightforward. Thirdly, we
believe that CCG is particularly well suited to representing the syntax
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of translations with maximum parallelism. This is because its combina-
tory rules are designed to be universal, leaving lexical entries as the only
formal objects that need to differ between languagesﬂ Also, categories
closely correspond to semantic types, often abstracting over differences
such as adverbs vs. prepositional phrases as modifiers. As we develop
our method, we will also seek an answer to the question in how far our
belief in CCG as a suitable formalism for parallel representation is cor-
rect.

The basic versions of our algorithm are presented in Section
more advanced ones in Section The treatment of source-language
words not corresponding to any target-language words is discussed in
Section[6.4 We evaluate our method in Section[6.5|by checking its capa-
bilities against a list of known types of divergences between sentences
and their translations. We formulate the answers to the above research
questions in Section [6.6]

6.2 Basic Derivation Projection Algorithms

The input to our proposed projection algorithm is a source-language
sentence e with a CCG derivation and its target-language translation f.
The output is a derivation for f, with the same interpretation as e.

The basic idea is to assign the words in f the same interpretations
and the same categories as the corresponding words in e and then build
a derivation, guided by the given interpretation. In the following, we
motivate each part of the algorithm and describe a series of approxima-
tions to it, with increasing capabilities. Many of our example sentences
are drawn from the Parallel Meaning Bank (PMB), a multilingual suc-
cessor project to the Groningen Meaning Bank (Bjerva et al.,[2014). We
use English as the source-language in all examples as this is the primary
source language we wish to apply the process to.

'In practice, type-changing rules and rule restrictions may also differ. However, in
statistical parsing, the latter play less of a role, as discussed in Section
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Sldel]:
([has]Q([four]@[legs]))Q([a]@[table])
S[del]\ NP:
[has]|Q([four]Q[leg])
NP: NP:
[a]@[table] o [[fourﬂ@[[legs]]o
NP/N: N> (S[dc]]\NP)/NP: NP/N: ]\>f:
[a] [table] [four]  [legs]
A table four legs
Een tafel vier  poten
NP/N:  N: (S[dc]\NP)/NP: NP/N: N:
[a] [[tabl%]] [four] [[leg%
NP NP: ~
[a]@[table] [[four]]@[[legs]]o
S[dcl]\ NP:
[has]Q([four]Q[legs]) .

Sldcl]:
([ras]Q([four]@Q[legs]))Q([a] Q[ table])

Figure 6.1: Example of an English CCG derivation, a word-aligned
Dutch translation and a parallel Dutch derivation. The English deriva-
tion is given on top, vertically mirrored compared to the usual way of
drawing. The Dutch derivation is given below, not mirrored. Word in-
terpretations depend on the semantic formalism used; we write them
using the [-] notation. [PMB 65/0788]
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6.2.1 Trapr: Transfer and Parse

Our first algorithm, called Trap, is stunningly naive. It proceeds as fol-
lows:

1. TraNsrEr: Assign the i-th word in f the category and interpreta-
tion of the i-th word in e.

2. Parse: Apply combinatory rules to obtain a normal-form deriva-
tion for f that has the same interpretation as that for e.

Trap gives the desired results for sentence pairs that have the same
number of words and moreover have a word-for-word correspondence
between both sentences, as in the example shown in Figure This is
not much, of course. In these extremely simple cases, we could achieve
the same effect by copying the English derivation verbatim and just
substituting the target-language words for the source-language words.
TraP instead uses a two-step approach where the parsk step builds up
target-language derivations from the ground. This allows for changing
the way in which categories are transferred in the more sophisticated
algorithms building on Trar.

The ParsE step is subject to two constraints: first, the derivations we
build must be normal-form (Eisner,[1996; Hockenmaier and Bisk}2010).
This is standard practice in CCG parsing and prevents us from using
higher-degree composition rules and type-raising rules where they are
not needed, which would lead to many possible semantically equivalent
derivations with spurious syntactic differences. The second constraint
is, of course, that the resulting derivation must assign the same seman-
tics to f as is assigned to e.

The second constraint could be enforced by building all derivations
possible with the lexical items assigned by the transfer step and CCG’s
combinatory rules, and then discarding those whose interpretation is
not equivalent to that of e. In practice, the search space would often
be too large for this. We should therefore immediately discard any in-
termediate constituent where we can tell from looking at its interpre-
tation that it could not possibly lead to the desired interpretation. An
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X/X:f X:g X\X:h X/X:f X:g X\X:h
<0 — <"
X:faQg X:hQg
<0 >0
X:hQ(fQg) X:fa@(hQg)

Figure 6.2: A simple example of two derivations with the same lexical
constituents but different interpretations.

abstract example is shown in Figure where the same lexical con-
stituents lead to two derivations with different interpretations. Let us
say that h@Q( f@Qyg) is the correct interpretation, then already the interme-
diate constituent in the right-hand side derivation with interpretation
h@Qyg is surely incorrect. h@Qg cannot lead to h@Q(fQg), it is not a “valid
semantic fragment” of it. Let us now make this notion precise.

Observe that in CCG’s combinatory rules (cf. Section [2.4), the in-
terpretations of all input constituents always occur as a subterm of the
interpretation of the output constituent. We could thus simply say that
an interpretation I* is a valid semantic fragment of an interpretation
1 iff I* is a subterm of I. However, we have to allow for the effects of
a-conversion and -conversion, which do not preserve all subterms (cf.
Section[2.2).

Specifically, they preserve all subterms with the following excep-
tions:

1. When a term (Ax.M) is a-converted, the result does not contain
any of its subterms containing z; it contains subterms containing
another variable instead.

2. When a term ((Az.M)@QN) is S-converted, the result does not con-
tain the ((Az.M)QN) or (Az.M) subterms. Furthermore, the re-
sult does not contain any of the subterms of M containing z; it
contains subterms containing /V instead.

3. When a term ((Az.M)QN) is S-converted and x does not occur in
M, the result does not contain N.
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We need not worry about the last case because for the purposes of
the Parse step, we treat all interpretations of source-language words,
such as [table], as free variables, so they cannot contain functions that
discard their input. Furthermore, the combinatory rules do not generate
such functions. Allowing for disappearance of certain subterms accord-
ing to the first two cases, we can still be sure that certain subterms of I*
have equivalents in I.

We assume that / and I* are in normal form, i.e., they do not contain
any terms of the form ((Az.M)QN). Let I* = (Az1.(Az2. - - (Azp. M) - -
)) where n > 0. The subterms z@QN in M where x € {x1,x2, -+ ,x,}
are the places where -conversion can happen when I* is applied to
arguments later in the derivation. We call these subterms the volatile
subterms. We then define as a stable subterm of I* any subterm of M
which does not contain a volatile subterm. Stable subterms can still
contain bound variables which are later replaced by other terms, but
only in argument positions, so that no additional 3-reduction outside
the new terms becomes possible. Therefore, every stable subterm J* of
I must subsume some subterm J of I, meaning that that there are terms
Bl, BQ, s ,Bn such that J*[l‘l = Bl][xg = BQ} s [ZL‘n = Bn] =J.

We use a function vsf (“valid semantic fragment”) that checks this
for all maximal stable subterms (it follows for all non-maximal stable
subterms). Specifically, vsf (I*, I) = 1 iff all maximal stable subterms of
I* subsume some subterm of I. If this is not the case for the interpreta-
tion of some constituent, we discard it immediately.

6.2.2 ARrTRrAP: Align, Reorder, Transfer and Parse

TraP’s most glaring defect is that it assumes words in f are in the same
order as the corresponding words in e. To fix this and to ensure we
transfer corresponding categories and interpretations from e to f in the
transfer step, we add a reordering step before TRansrer in which the e
words are brought into the order corresponding to f. For this we must
know which word corresponds to which. Let us, for now, assume that
we can obtain sound knowledge about this, e.g., from human annota-
tors or from word alignment tools developed in the field of Machine
Translation. The algorithm then becomes:
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1. ArigN: Determine which word in e corresponds to which word in
f.

2. Reorper: Stably sort the words in e so they appear in the same
order as the corresponding words in f.

3. Transrer: Assign the i-th word in f the category and interpreta-
tion of the i-th word in the reordered sentence e.

4. Parse: Apply combinatory rules to obtain a normal-form deriva-
tion for f that has the same interpretation as that for e.

Consider, for example, the following derivation of a noun phrase
and the word alignment with the French translation:

NP:
[a]@(([very]|Q[political]) Q[ decision]) 0
N: =
([very]Q[political])Q[ decision]
N/N: =
[very]Q[political]
NP/N: (N/N)/(N/N): N/]\? N:

[a] [very] [political] [decision]
a very political decision
une décision tres politique

It shows what is a frequent phenomenon in comparing English and
French: attributive adjectives normally precede the noun they modify
in English, but normally succeed it in French (Dryer, 2013c). The order
of attributive adjective and noun is only one example of a vast variety of
word order features that differ systematically across languages and that
can, but do not have to be, mostly consistent within any one language
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(Dryer, |2013a). Other such features include the order of subject, object
and verb (Dryer, 2013f), that of demonstrative and noun (Dryer, 2013d)
or that of relative clause and noun (Dryer, 2013e). It is therefore crucial
that our algorithm can handle these differences.

The ReorpER step produces the following output in our example:

NP/N: N: (N/N)/(N/N): N/N:
[a] [decision] [very] [political]
a decision very political

The TraNsEFER step then assigns categories and interpretations as fol-
lows:

une décision tres politique
NP/N: N: (N/N)/(N/N): N/N:
[a] [decision] [very] [political]

The interpretations are correct, but the Parsk step will fail now be-
cause the adjective politique will not be able to combine with the noun
it is supposed to modify: the slash in its category N/N is leaning the
wrong way. So ARTRAP does no better than Trapr. Another refinement
is needed.

6.2.3 ARrTrRAP: Align, Reorder, Flip, Transfer and Parse

Our next algorithm, ArrrrAP, extends ArTraP with another step after
reordering: the slashes in the syntactic categories are flipped as needed.
More precisely, whenever reordering changed the direction in which an
argument is positioned relative to its functor, the slash in the category
of the functor corresponding to that argument is flipped—not only on
the functor itself, but also in all instances that are structure-shared (cf.
Section in the derivation for e. This is the new algorithm:
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1. ArigN: Determine which word in e corresponds to which word in
f.

2. Reorper: Stably sort the words in e so they appear in the same
order as the corresponding words in f.

3. Fup: In the syntactic categories, replace all structure-shared in-
stances of / (\) corresponding to arguments which were moved to
the other side of their functor into \ (/).

4. Transrer: Assign the i-th word in f the category and interpreta-
tion of the i-th word in the modified sentence e.

5. Parse: Apply combinatory rules to obtain a normal-form deriva-
tion for f that has the same interpretation as that for e.

After Frip, the output of TRANSFER in our example now is:

une décision tres politique
NP/N: N: (N\N)/(N\N): N\N:
[a] [decision] [very] [political]

This finally enables Parsk to build the correct French derivation:

une décision tres politique
NP/N: N: (N\N)/(N\N): N\N:
[a] [decision] [very] [[politicaé]]
N\N: =
[very]Q[political]
N: <
([very]Q@[political])Q[ decision]
>0
N .

[a]@(([very]@ [[polit;cal]])@[[decisionﬂ )
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Apart from the differences in order, slashes and words, the French
derivation is trivially different from the English one in that one instance
of forward application has been replaced by backward application. But
ARFTRAP can also handle cases that require more complex structural
changes. For example, not only does it happen that an entire argument
moves to the other side of its functor, it can also be only part of an argu-
ment, in which case Parse must introduce crossed composition.

Causes of this include cases where an adverb is VP-final in English
but VP-internal in German as, in Figure or VPs that are nested in
English but cross-serial in Dutch (Huybregts, 1976), as in Figure

The opposite case, where the source language has a crossed con-
struction but the target language sentence does not, is exemplified in
(1), where English exhibits Heavy NP Shift (Ross, 1967). The deriva-
tion for the Dutch (1-b) most closely matching the structure for that
of the English (1-a) would involve harmonic composition where (1-a)
uses crossed composition, but since we enforce normal-form deriva-
tions, ARrTrAP Will only use application here.

(1) a. Igavetomy friend this beautiful gift.
b. Ik gaf dit mooie kado aan mijn vriend.

Note also how ArrrrAP can handle thematic divergences. A thematic
divergence (Dorr,|[1993) between source and target language sentence oc-
curs when corresponding words fill different syntactic roles. For ex-
ample, the subject of a verb in the source language may correspond to
the object in the target language, and vice versa, as exemplified in Fig-
ure One linguistically motivated approach would be to give gus-
tan the same semantics as like, but with the argument order reversed:
Ae.As.([like]@s)@e. This would allow the verb to combine with its ar-
guments in the usual object-subject order and still produce the correct
semantics. However, ARFTRAP is unaware of the syntactic roles of the
target language, so it cannot detect when such a change is appropriate.
It just makes sure the same sentence semantics is obtained and does
not change the internal structure of lexical entries. In cases such as the
present example, this results in the verb combining with its subject first
and object second. In this particular example, no flipping is even neces-
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Slem]:
[that]Q((([every]Q[day])@([see]@[them]))@[we]) 0
S[del]: -
(([every]@[day])@Q([see]@[them]))@[we] 0
S[del]\NP:
([every]Q[day])@Q([see]@[them]) 0
S[del]\NP: (S[dc\NP)\(S [dcl]\NPf:
[see]@[them] 0 [every]@Q[day]
Slem]/S[dcl]: NP:  (S[\NP)/NP:  NP: (IV[d\IV[de)/N: N:
[that] [[we]] ﬂsee]] [them] [every] [[daJ]]
that them every
dass W{ 7&1?%
Slem]/S[dcl]:  NP:  NP: (IV[del)/IV[dcl]))/N:  N: (S[dcl]\NP)\NP:
[that] [we]  [them] [every] [[day] [see]
(SIdcl]\NP)/ (SN
[every]|Q[day] 1
(S[dcl]\NP)\NP: x
Az ([every]@Q[day])Q([see] Q) 0
<
S[del]\NP:
([every]Q[day])Q([see]Q[them]) -
Sldel]:
(([every]Q[day])@Q([see]@[them]))@[we] 20
Slem]:

[that]Q((([every]Q[day])Q([see]@[them]))@[we])

Figure 6.3: VP-internal modification in German requires the use of
crossed composition.
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Slem]:

[that]Q(([should]Q([help]|Q[you]))Q[I]) 0

S[del]: -
([should]@([help]@Q[you]))Q@[I] 0

S[del]\ NP: <
[should]Q([help]Q[you]) 0

S[b]\NP:
[help] @[you]

Slem]/S[del]:  NP:  IV[dcl]/IV[b]: (S[b]\NP)/NP: ]\ﬁj:
[that] [1] [should] [Relp] [you]
that I should help you

dat ik u moet helpen
Slem]/S[dcl]:  NP: NP:  IV[del]/IV[b]:  IV[b]\NP:

[that] [1] [you] [should] ﬂhelp]]l

(S[dc\NP)\NP: ~*

Az.[should]|Q([help]Qx)
<0
S[del]\ NP:
[should]Q([help]Q[you])
Sldcl]:
([should]@Q([help]Q[you]))Q[I]
Slem):

[that]Q(([should]|Q([help]Q@[you]))Q[I])

Figure 6.4: Cross-serial word order in Dutch requires the use of crossed
composition. IV [dcl] is an abbreviation for (S[dcl]\ NP). [PMB 98/0884]
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Sldel]:
([like]Q([these]Q[apples]))Q[] 0
S[del]\ NP: <
[like]Q([these]@Q[apples]) 0
NP: >
[these]Q[apples] 0
NP:  (S[dc]\NP)/NP: NP/N: N
1] [like] [these] [apples]
I like these apples
Me gustan estas manzanas
NP:  (S[dc]\NP)/NP: NP/N: N:
1] [like] [these] [apples]
Npe
[these]@[apples]
S[del]\ NP: =
[like]Q([these]Q[apples]) o
Sldel]: <

([Like]Q([these]Qapples]))Q[I]

Figure 6.5: Example from Rosetta (1994) illustrating thematic diver-
gence.
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Slem]:
[that]@(([like] @[it])Q[I]) .
>
Sldel]:
([ike] Qit])Q[I] .
<
S[dcl]\NP:
ike]ofit)
Slem]/S[del]: NP:  (S[e\NP)/NP:  NP:
[that] [1] [like] [it]
that 1 like it
dass es mir gefallt
Slem]/S[dc]]: NP: NP: (S[dcl]\NP)\NP:
[that] [it] 1] [like]
—>T
S[del]/(S[dcl]\NP):
Az.xQ[I] )
> X
S[del]\NP:
Az.(([like]Qx)Q[I]) 0
<
S[dcl]:
([like] Qit]) Q] .
Slem)]: >

[that]Q(([like]Q[it])Q[I])

Figure 6.6: Example in which our approach to handling thematic di-
vergence requires the introduction of type-raising and crossed compo-
sition.

sary because the subject happens to be of the right of the verb, and the
object on its left.

Things are a little more complicated in the English-German example
in Figure where both arguments, es and mir, are on the same side of
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the verb gefillt while the second argument of the verb (according to the
English category) is closer to the verb than the first, blocking seman-
tically correct application. In such cases, type-raising in combination
with composition allows the arguments to combine with the verb in the
order that results in the correct semantics.

6.3 Advanced Derivation Projection Algorithms

6.3.1 ArrcoTrAP: Align, Reorder, Flip, Compose, Transfer
and Parse

ARFTRAP still can only handle cases where there is a one-to-one corre-
spondence between source and target language words. For example,
if several words in e are aligned to the same word in f, the TRANSFER
step of ARFTRAP fails because it is not specified which of the words of e
should provide the category and interpretation. ARFCOTRAP is the first
in a series of refinements gradually relaxing the one-to-one assumption.
Its steps are the following;:

1. Arign: Determine which word in e corresponds to which word in
f.

2. ReorpEr: Stably sort the words in e so they appear in the same
order as the corresponding words in f.

3. Fuir: In the syntactic categories, replace all structure-shared in-
stances of / (\) corresponding to arguments which were moved to
the other side of their functor into \ (/).

4. Comrosk: For every group of e words that are all aligned to the
same f word, combine them into one constituent using combina-
tory rules, obeying the normal-form and valid semantic fragment
constraints. Replace these words by a single multiword with the
same category and interpretation as that constituent.

5. Transrer: Assign the i-th word in f the category and interpreta-
tion of the i-th word in the modified sentence e.
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6. Parse: Apply combinatory rules to obtain a normal-form deriva-
tion for f that has the same interpretation as that for e.

The new Cowmrosk step, simply put, puts multiple words together
into one, retaining their combined interpretation. Consider the follow-
ing example [PMB 01/0935]:

Sldcl]:
([is]Q([e]Q[zero]))Q([the] Q([ default] Qvalue])) 0
NP: S[dcl]\NP:
[the]Q([default]@[value]) 20 [is]@([a]@[zero]) N
N: NP:
[default]@[value] 0 [[a]]@[zer?k]]
NP/N: N/N: No (S[dcI)\NP)/NP: N:
[the] [default] [value] [is] [zero]
The default value is Zero
Het sMg is nul

Reordering and flipping are no-ops in this case, but then there re-
main five words on the English side as opposed to four on the Dutch
side. The cause is that standaardbedrag is a single (compound) noun
whereas the English counterpart default value consists of (or is spelled
as) two words. In this case, the Comrosk step applies a single instance
of forward application to create a single constituent from them:

The default value is Zero
NP/N: N/N: N: (S[dcl]\NP)/NP: N:
[the] [default] [value] [4s] [zero]
>O
N .

[default] @ [value]
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This new constituent is then transferred to standaardbedrag, and the
Parsk step builds the following derivation:

Het standaardbedrag is nul
NP/N: N: (S[dc\NP)/NP:  N:
[the] [default]@ [[valueﬁ [4s] [zero]
NP: > NP: i
[the]Q([default]@[value]) [[a]]@[[zer%]]
S[d\NP:
[is]@([a]@[zero])
Sdel]: <

([is]@Q([a]@[zero]))@Q([the]Q([default]@[value]))

In this relatively straightforward case, the constituent built by the
Cowmposk step is identical to a constituent in the original derivation, and
its interpretation is a complete subterm of the target interpretation. Nei-
ther need be the case. Consider the following example [PMB 01/0942],
in which the semantics of two complex English constructions—negation
with do-support and want followed by the infinitival particle to—are ex-
pressed with fewer words in Dutch:
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S[dcl]:

([not]@Q([do]@Q([want]Q([to]Q([be] Q[ famous])))))Q[I] 0

S[del]\ NP: <

[not]@([do]@Q([want]Q([to]Q([be] @[ famous])))) 0

S[b]\NP: -

[want]Q([to]Q([be] Q[ famous])) 0

S[to]\ NP -

[to]Q([be] Q[ famous]) 0

(S[dcl]\NP)/(S[b]\NP): S[b]\NP:
Az.[not]@Q([do]Qx) L [be]@[famous]

NP: IV[All/IV[b]: IVId\IV[Ad): TVb]/IV[to]: IV[to]/IV[b]: IVIb)/IV[adi]:  IV[ad]):
M [do] [not] [want] [to] [be] [famous]
I do n't want to be famous
Ik %/ berof<zijn

Reordering and flipping gives:

NP: IV[b]/IV]to]: IV[to]/IV[b]: IV[dI\IV[b]: IV[dc\IV[del]: IV[adj]: IV[b]\IV][adj]:
11 [want] [to] [do] [not] [famous] [be]

I want to do n’t famous be

The Comrosk step then combines want and to through forward com-
position and do and n’t through backward composition:

(S[b]\NP)/(S[to]\NP): (S[del]\NP)\(S[b]\NP):
Az [want]Q([to] Q) L Az.[not]Q([do]Qx)
NP: IV[b]/IV]to]: IV[to]/IV>[b] ¢ IV[ded\IV[b]: IV[d(:l]\IV[(izl] ¢ IV[adj]:  IV[b\IV|adj]:
M [want] [to] [do] [not] [famous] [be]
1 want to do n't famous be

The resulting Dutch derivation is:
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Ik wil niet beroemd zijn
NP: IV[b]/IVb]: IV[dc\IV [b]: IV [adj]: IV[b]\IV [adj]:

1] Az Jwant]Q([to] Q) )\I‘[[not]]@([[do]]@%) [famous] [be] 0

(S[del]\NP)/(S[b]\NP): X S[b]\NP: <
Az.[not]Q([do]Q([want]Q([to]Qz))) [be]@[ famous] 0

S[dcl]\NP: ~
[not]@([do]@([want]@([to]Q([be]Q[famous])))) 0

S[del]: <

([not]Q([do]@([want]Q([to]Q([be]@[famous])))))Q[I]

The mechanism can even be extended to non-contiguous sets of En-
glish words that correspond to a single target-language word, as is often
the case with English phrasal verbs. In the PMB, these are given a com-
positional analysis, with the verb particle acting like a manner adverb.
Consider the following example [PMB 88/0916]:

S[dcl]\NP:
[not]@([do] @([up] @([fuck]Q[it]))) o
S[b]\ NP: >
[upl@([fuck]@it])
(S[dcl]\NP)/(S[b]\NP): S[b]\NP:
Az.([not]@Q([do]@Qx)) 1 [fuck]Qit]
[V[Ael]/IV[b]:  IVA\IV]dd]: (S[]\NP)/NP: NP: IV[b]\IV[b]:
[do] [not] [fuck] [it] [up]
Do n't fuck it up

The ReoRrDER step puts fuck and up together, which enables the Com-
POSE step to combine them via backward crossed composition:
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fuck up it Do n't
(S[b]\NP)/NP: IVI[b]\IVb]: NP: IV[deI\IV[b]:  IVI]del]\IV[dcl]:
[fuck] [[upﬂ<1X [it] [do] [not] 1
(S[dcl]\NP)/NP: (S[dcl]\NP)\(S[b]\NP):
Az.([up]Q([fuck]Qx)) Az.([not]Q([do]Qx))

Using the composed categories and interpretations, the resulting
(Flemish) Dutch derivation is:

Verbrod het niet
(S[dcl]\NP)/NP: NP: IV [del\ IV [del]:
Az ([up]Q([fuck]Qx)) [[z%ﬂ Az.([not]@Q([do]Qx))

S[dcl]\ NP: =
[wr]a([fuck]afit]) )
<
S[decl]\NP:

[not]@([do]@([up]@([fuck]@[it])))

As a further example of the capabilities of Composk, let us consider a
somewhat artificial example where two different phrases have the same
meaning and also happen to both be English—that is, they are para-
phrases of each other. One expresses the possession relation using the
preposition of whereas the other uses the so-called Saxon genitive:
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NP:

[the]@(([of | @[ John])@[dog]) 20
N:
(lof1aliomn])aldog]
NP\NP:
[of]@[John]

NP/N: N: (N\N)/NP: N?:
[the] [dog] [of] [John]
the dog of John

The ’s token expresses the possession relation like of, but it also has
the effect of turning John into a determiner for dog, expressing definite-
ness like the. 's should therefore be aligned to both function words. Af-
ter reordering and flipping, Composkg uses generalized composition to
produce a new category and interpretation suitable for ’s:

John the of dog

NP: NP/N: (N/N)\NP: N:

[John] [the] lof] [dog]
(NP/N\NP: ~

Ao Ae.Jthe]Q(([of]|Qo)@Qe)

6.3.2 ArrcosTrAP: Align, Reorder, Flip, Compose, Split,
Transfer and Parse

The opposite case, in which one source-language word corresponds to
two or more target-language words, is trickier. Ideally, we would like to
split up the category and interpretation in such a way that each target-
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Slem]: [that]Q(([likes]| Q[ flowers])Q[she])
Sldcl]: ([likes] Q[ flowers]) Q[ she]

S[dcl]\NP:[likes] @ [[ﬂowers]]<0
>

Slem]/S[dcl]: NP: (S[dcl]\NP)/NP: NP:
[that] [she] [likes] [flowers]
that she likes flowers
dat ze/ van bloemen houdt
Slem]/S[dcl]:  NP: PP/NP: NP:  (S[dc]\NP)\PP:
[that] [she] [van] [[ﬂowerso]] [houdt]
>
PP:[van]Q[flowers] o
S[dcl]\NP:[likes] Q[ flowers]
Sldel]: ([likes]Q[flowers]) Q[ she] io
Slem)]:[that]Q(([likes] Q[ flowers])Q[she])
where
[likes] = Ado.Asu.Amp.(su@Az.(do@Ny.( lé’i;éiiiigil(e,x) ;mpQe))))
Stimulus (e, y)
[houdt] = Apo.Asu.dmp.(suQx.( | like.v.03(e) i (po@e); (mpQe))))
Ezxperiencer(e, x)

[van] = Anp.Xe.(np@Az.

)

Stimulus(e, )

Figure 6.7: A linguistically motivated split of the category and interpre-
tation of likes. [PMB 04/0848]
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language word receives a linguistically adequate category. We give an
example of this in Figure The English verb likes with a direct ob-
ject here corresponds to the Dutch verb houden with a prepositional ob-
ject headed by the preposition van. Our analysis assigns van the syn-
tactic category PP /NP and houdt (S[dcl]\ NP)\ PP, which, when cross-
composed, would yield a category identical to that of likes, up to slash
flipping. For splitting up the semantic category, we look at the \-DRS
expression that our symbol [likes] stands for and choose categories so
that the category of van contributes the semantic role condition for the
object and that of houdt contributes the remaining conditions.

A similar configuration appears where some grammatical category
is expressed synthetically in the source language but analytically in the
target language. For example, English frequently expresses past tense
using the synthetic simple past form of a verb where the Dutch transla-
tion opts for an analytic construction, with a form of zijn or hebben as an
auxiliary, combined with the past participle form of the verb. A seman-
tically adequate analysis would assign the DRS conditions expressing
tense to the auxiliary and the rest to the participle, as exemplified in
Figure[6.8|

Unfortunately, there is no general procedure to perform such splits
mechanically—given a A\-expression h, we could choose from infinitely
many f, g such that they combine into % via application or composition
(Huet, |1975; Kwiatkowksi et al., [2010), and similarly for the syntactic
categories. We cannot hope to find the split linguistically most adequate
with a simple mechanical process. However, we can still find a target-
language derivation while avoiding splitting. We will give one such
solution in this section, and another in the next.

The first solution applies to the case where the group of target-lan-
guage words aligned to the same source-language word is contiguous.
We can then avoid splitting the semantics by treating them as a single
multiword, or as a word-with-spaces in the terminology of Sag et al. (2002).
For example, in Dutch uses a definite article to refer to life in general
whereas English uses no article. We can sensibly construct a derivation
where het leven is a word-with-spaces with the same category and in-
terpretation as the English one-word phrase life. As another example,
in|(3)|the Dutch fixed expression (again borrowing terminology from Sag
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S[dcl]: ([bought]Q([a] @[ fozglove]))@Q[he]

<
S[dcl]\NP:[bought]Q([a] @ [[fomglove]])>0
NP:[a]Q[fozxglove] o
>

NP: (S[dc]\NP)/NP:  NP/N: N:

[he] [bought] [a] [fozglove]

He bought a foxglove
Hij heeft een vingerhoedskruid gekocht
NP: IV[dcl]/IVpt]: NP/N: N: (S[pt]\NP)\NP:
[he] [heeft] [a] [foxglove] . [buy]

NP:[a]Q[foxglove] -
S[p\NP: [buy]@([a] &l ozglove])
S[dcI\NP:[bought]Q([a] Q[ foxglove])
Sldcl]: ([bought]Q([a] Q[ foxglove])) Q[ he]

0

~0

<0

where

e tl t2
buy.v.01(e)
Theme(e, y)
[bought] = Ado.Asu. mp.(su@Az.(do@Ny.( | Agent(e,x) ; mp@e))))
now(ty)
eCt
to < 11

t1 to

[heeft] = Avp Asu.Amp.((vpQ@Qsu)@Aa.( ;wggtll) ; (mpQz)))

to <t

et1 t2

_ buy(e) :
[buy] = Ado.Asu.Amp.(su@Az.(do@y.( Theme (e, ) ; mpQe))))

Agent(e, x)

Figure 6.8: A linguistically motivated split of the category and interpre-
tation of bought. [PMIB 91/0888]
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et al.| (2002)) op het punt tulfills the same function as the English word
about and can be treated as a word-with-spaces with the same category
and interpretation. In the adverbial expression naar beneden (liter-
ally: to beneath) is more analytic than the corresponding English adverb
downstairs, but also contiguous and can therefore be treated as a word-
with-spaces.

) That's life.

a.
b. Datis het leven. [PMB 35/0877]

(3) a. He wasabout to go out when the telephone rang.
b. Hij stond op het punt weg te gaan toen de telefoon ging.
[PMB 00/0917]
4) a. We heard him come downstairs
b. We hoorden hem naar beneden komen [PMB 51/0833]

The words-with-spaces solution is implemented by the ArrcosTraP al-
gorithm, adding a Spuit step. This step is so named because it divides
up the category and interpretation of a single source-language word
among a number of target-language words, which become a multiword.

1. ArioN: Determine which word in e corresponds to which word in
f.

2. Reorper: Stably sort the words in e so they appear in the same
order as the corresponding words in f.

3. Fup: In the syntactic categories, replace all structure-shared in-
stances of / (\) corresponding to arguments which were moved to
the other side of their functor into \ (/).

4. Comrosk: For every group of e words that are all aligned to the
same f word, combine them into one constituent using combina-
tory rules, obeying the normal-form and valid semantic fragment
constraints. Replace these words by a single multiword with the
same category and interpretation as that constituent.

5. Spuit. For every group of contiguous f words that are all aligned
to the same e word, combine them into one word-with-spaces.
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6. TraNsrEr: Assign the i-th word in f the category and interpreta-
tion of the i-th word in the modified sentence e.

7. Parse: Apply combinatory rules to obtain a normal-form deriva-
tion for f that has the same interpretation as that for e.

6.3.3 ARFrcOISTRAP: Align, Reorder, Flip, Compose, Insert,
Split, Transfer, Parse

In cases where two or more non-contiguous target-language words corre-
spond to a single English word, as in Figures[6.7/and[6.8} we cannot treat
them as words-with-spaces. Another option is to have one word con-
tribute the entire semantics and treat the other(s) as lexically empty, pos-
sibly even as a “skipped” word that is not part of the derivation proper.
A reanalysis of the sentence pair in Figure |6.7| under this treatment is
shown in Figure

Note that here we assume a different word alignment than before,
one where van remains unaligned. This trick can be applied in many
cases where function words in the target-language sentence do not have
a directly corresponding word in the source-language sentence. This
includes auxiliaries such as heeft in Figure articles such as het in[(2),
reflexive pronouns such as e in[(5)} quantitative er (Bech} 1952} Berends
et al., 2010) as in@ existential /expletive er (Bech, 1952; Bennis, 1986)
as in[(7)|and complementizers such as dat in[(8)}

5) a. I feelsick.

b. Ik voel me ziek. [PMB 58/0804]
6) a. Let’s getone.

b. Laten we er een nemen. [PMB 11/0939]
(/) a. Iwonder what happened to Paul.

b. Ik vraag me af wat er met Paul gebeurd is. [PMB 35/0784]
(8) a. The manager said it was your fault.

b. De manager zei dat het jouw schuld was. [PMB 45/0931]

Skipping unaligned target-language words is implemented by the Arr-
coisTrAP algorithm. The new INsErT step actually deletes target-language
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Slem]:
[that]Q(([likes]Q[flowers])Q[she]) 0
>
S[dcl]:
([likes] Q[ flowers])Q[she]
Sd\NP:
[likes]| Q[ flowers]
Sfem]/S[del]: NP:  (S[d]\NP)/NP: NP
[that] [she] [likes] [flowers]
that she likes flowers
dat ze/ van bloemen houdt
Slem]/S[dcl]:  NP: skip: NP: (S[dcl]\NP)\NP:
[that] [she] Az.x [flower] [like]
<0
S[dcl]\ NP:
[likes]@Q[ flowers]
S[del]: <
([Likes]| Q[ flowers])) Q[ she] o
>

Slem)]:

[dat]Q(([likes]Q[flowers])Q[she]))

Figure 6.9: Example of skipping: houdt receives the (slash-flipped) cat-

egory of likes; van is skipped.

[PMB 04/0848]
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words, but from the perspective of the source-language derivation, it is
the insertion of new material into the sentence (but not into the deriva-
tion):

1. AvrigN: Determine which word in e corresponds to which word in
f.

2. Reorper: Stably sort the words in e so they appear in the same
order as the corresponding words in f.

3. Fup: In the syntactic categories, replace all structure-shared in-
stances of / (\) corresponding to arguments which were moved to
the other side of their functor into \ (/).

4. Comrosk: For every group of e words that are all aligned to the
same f word, combine them into one constituent using combina-
tory rules, obeying the normal-form and valid semantic fragment
constraints. Replace these words by a single multiword with the
same category and interpretation as that constituent.

5. Insert. Delete every unaligned target-language word.

6. Spuit: For every group of contiguous f words that are all aligned
to the same e word, combine them into one word-with-spaces.

7. TrRaNsrFER: Assign the i-th word in f the category and interpreta-
tion of the i-th word in the modified sentence e.

8. Parse: Apply combinatory rules to obtain a normal-form deriva-
tion for f that has the same interpretation as that for e.

In order to train a parser on parallel derivations that contain skipped
words, the parser needs to be able to skip certain words and to learn
when to do so. We will introduce such a parsing algorithm in Sec-

tion[Z.2.11
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6.4 Unaligned Source-language words

Word alignments as commonly used in machine translation (e.g.,[Koehn
et al. (2003)) are bipartite graphs where the partite sets are the sets of
words in a source-language sentence and its target-language transla-
tion. Maximal connected subgraphs have either one word of each, in
which case they are called 1:1 translation units, one source-language
word and several target-language words (1:N translation unit), several
source-language words and one target-language word (N:1 translation
unit) or only one word (unaligned word).

ArrcorstraP cannot handle 1:N translation units where the target-
language words are discontiguous, but it handles the contiguous case
through the Sprit operation. N:1 translation units are handled through
the Composk operation. Unaligned target-language words are handled
through the Insert Operation. It does not yet handle unaligned source-
language words.

In a good alignment, in what situations can we expect unaligned
source-language words? One possible example, given by (Koehn, 2010,
p- 114), is the word does in the English-German sentence pair (9).

9) a. John does not live here
b. John wohnt hier nicht

As Koehn points out, does could be unaligned because it has no clear
German equivalent, but it could also be aligned to wohnt, because that’s
what it shares number and tense with, or to nicht, because does appears
because of the negation. We already opted for the third option in a
number of Dutch examples above. Consider also where German
expresses with a verb what English expresses with a predicative adjec-
tive, and thus lacks a copula, and in which the Italian lacks an overt
subject pronoun:

(10) a. Iamcold
b. Ich friere

(11) a. Iseehim already
b. Lo vedo gia
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The words am and I, respectively, thus lack a direct equivalent in the
translations and could be left unaligned. The question then arises how
we make sure that their interpretations (which we treat as atomic and
would give as [am] and [I], respectively) enter into the target-language
derivation we construct. On grounds of morphosyntactic features, an
argument can be made that am should be aligned to friere alongside cold
because friere and am both contribute the features of first person singu-
lar, and present tense. Similarly, one can argue that I should be aligned
to vedo alongside see because vedo is the first-person singular form of
the verb. Indeed, Italian is argued to be a language where pronominal
subjects are primarily expressed through verbal affixes (Dryer, 2013b),
which would make this choice seem even more fitting. The Composg
step of ArrcoistraP would then merge I and see as follows:

him I see already
NP: NP: (S[del]\NP)\NP: IV[del]\IV [del]:
[him] 1] [see] [already]
—— > T
S[del]/(S[del]\NP):
Af(fal]) o1
S[dcl]\ NP: x

Az.(([see]@x)Q[I])

The problem with this is that if we pre-compose subject and verb,
verb phrase modification is no longer possible: the category of already,
transferred to gid, expects to combine with the verb phrase category
S[dcl]\NP where NP stands for the subject category, but the subject is
no longer available. One might consider changing the original English
grammar to avoid verb phrase modification and use sentence modifica-
tion instead.

A different approach to unaligned source-language words would be
a DELETE step which inserts empty elements into the target-language sen-
tence, for example “tokens” that are not part of the written form but
which have the categories and interpretations of the unaligned source-
language words. For example, [(11-b)|could then be analyzed as follows:



6.4. Unaligned Source-language words 159

€ Lo vedo gia
NP: NP: (S[pt]\NP)\NP: IV[del\IV[dcl]:
[1] [him] [see] . [already]
<
S[del]\NP:
[see]@[him] o
S[del]\NP: <
[already]@Q([see] @[him]) o
<
S[dcl]:

([already]Q([see]@Q[him]))Q[I]

Alternatively and almost equivalently, the introduction of the se-
mantic material not associated with any target-language word could be
accomplished by a unary type-changing rule with a specific interpreta-
tion for the introduction of first-person subjects:

Lo vedo gia
NP: (S[pt]\NP)\NP: IV {del\ IV [del]:
[Rim] [see] o [already]
<
S[dcl]\NP:
[see]@[him] .
S[dcl]\NP: <
[already]Q([see] @[him]) i
Sldel]:

([already]Q([see]@[him]))Q[I]

In either case, the target-language parser we train will have to learn
to predict from contextual features when material should be added. For
example, the presence of an Italian first-person singular verb form in
the right context can be a clue that an empty first-person singular pro-
noun is required. Alternatively, a verb phrase being headed by such a
verb form could help the parser predict that it should apply the corre-
sponding type-changing rule to it. Similarly, a German verb form as-
sociated with the interpretation of an English adjective, as we might
have in could give the parser a hint to introduce the semantics of
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the English copula via either route. Thereby, existing links, e.g., mor-
phosyntactic ones, between overt target-language words and unaligned
source-language words, would still be preserved, albeit not in the CCG
lexicon, but in the parsing model.

The introduction of semantic material in parallel derivations with-
out making it part of the interpretation of any target-language word is
even more compelling in pairs such as the following, where the French
relative clause happens to be reduced, viz. lacking an overt relative pro-
noun and auxiliary, while the English happens to have both.

(12) a. asurvey that was conducted by the EU
b. une enquéte menée par 1’ UE

Here, there is really no good way to associate the semantics of that and
was with any French word, since the exact same reduction could occur,
semantically equivalently, in English:

(13)  asurvey conducted by the EU

In this case, our English derivation would itself use a type-changing
rule, for which the following interpretation is adequate. The very same
rule could be used in the French interpretation in [(I2)}

(14)  S[pss|\NP:f = S[dcl]\NP:[that]Q([be]Qf)

In conclusion, we find that either type-changing rules or empty ele-
ments are the best way to deal with unaligned source-language words
within our framework. On one hand, type-changing rules seem simpler
because they are not directional whereas for empty elements a decision
would have to be made as to where to insert them, left or right of the con-
stituent whose semantics is to be changed. On the other hand, empty el-
ements may generalize better because they can behave syntactically the
same as overt elements—for example, an empty Italian subject pronoun
can behave like a non-pronominal subject. We leave these questions to
future work and for now contend ourselves with the limited capabilities
of ARFCOISTRAP.
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6.5 Handling of Translation Divergences

A sentence and its translation often express the same thing in a different
way. Not only are different words and different phrase orders used, of-
ten the sentences are also structurally different. In the Machine Transla-
tion literature, such phenomena are known as translation divergences. We
have used a number of instances of divergences above to motivate the
algorithmic steps of Composk, INsert, SpLiT and the hypothetical DeLETE.
But are these steps sufficient to handle all—or even many—of the trans-
lation divergences we can expect to find in the data?

In order to answer this question, we turn to the well-known survey
of translation examples by Lindop and Tsujii (1991), later reorganized
by Dorr| (1993) into a hierarchy that she argues covers the entire range
of possible translation divergences. We will sketch for each of Dorr’s
divergence types whether and how Arrcoistrar handles it, and how
well we can expect the resulting lexical items to generalize. We will use
a representative subset of the original examples, sometimes reordered
to have English, our source language, first.

6.5.1 Thematic Divergences

Thematic divergences occur when a verb assigns the same semantic
roles different syntactic roles than the translation, as in these examples
by Lindop and Tsujii:

(15) a. Ilike the car

b. Mir gefdllt der Wagen
(16) a. John misses Mary

b. Mary manque a John
(17)  a. Helacks something

b. Thm fehlt etwas

Our algorithm has no notion of syntactic roles. In each example, it will
build the parallel derivations in such a way that the interpretations of
the arguments are taken by the verb interpretation in the same order
as in the source language, using combinatory rules, including type-
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raising, as needed (cf. Section[6.2.3). This certainly works for the ex-
amples presented, and also for different argument orders as we have
seen in Figure[6.6]

The resulting derivations are a bit odd since we preserve the arbi-
trary semantic argument order of English and change the syntactically
motivated syntactic argument order. For example, in a normal analysis
of [(16-a)} the interpretation of miss takes the Stimulus as first argument
and the Experiencer as second just because this matches the canonical
object-subject order of combining. In preserving the semantic but not
syntactic argument order, we obtain a derivation for in which
the verb takes the subject Mary before the object. If one knows that
Mary is the subject here, one might change the verb category and inter-
pretation correspondingly so as to obtain more uniform categories and
derivations, better generalization for statistical parsing and a grammar
that supports binding theory along the lines of (Steedman) 2001} Sec-
tion 4.3.1).

For German and other languages with freer word order, treating ar-
gument types and their order with the appropriate generalizations is
more intricate and may require additional formal machinery. Treat-
ments at different levels of departure from classical CCG have been pro-
posed, for example, in Hockenmaier| (2006); Steedman and Baldridge
(2011); [Hoffman| (1995).

6.5.2 Structural Divergences

Like thematic divergences, the term structural divergences describes diver-
gences in argument structures, primarily of verbs. Whereas the former
term describes syntactic positions and case assigned to arguments, the
latter describes changes in the internal structure of arguments, e.g., ex-
pression as an NP vs. as a PP or as a bare adjective vs. as a

VP with a copula

(18) a. He aims the gun at him
b. Er zielt auf ihn mit dem Gewehr
(19) Der Student beantwortet die Frage

IS

L'étudiant répond a la question
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(20) a. Heseemsill
b. Hij schijnt ziek te zijn

Our algorithm’s answer to such divergences is to treat “extra” words
in the target language, like mit, a or te zijn, as skipped, as described in
Section[6.3.3] The opposite case, where the source language contains ex-
tra (function) words, would require the use of empty elements or type-
changing rules, as discussed in Section[6.4] A parser expected to create
similar representations from unseen text will have to predict when to
skip, insert or type-change, and how the choice of lexical categories and
interpretations in the context is affected.

6.5.3 Categorial Divergences

While structural divergences concern the expression of arguments as
phrases of different types, categorial divergences concern the expression
of functors, such as verb phrases or modifiers, as phrases of different

types.

(21) a. Postwar
b. Nach dem Krieg
(22) a. Heresides in Amsterdam
b. Hijis in Amsterdam woonachtig
(23) a. Itsuffices
b. Hetis voldoende
(24) a. Hopefully
b. Onespére
(25) a. Johnis fond of music
b. John aime la musique

When a single-word source-language modifier corresponds to a com-
plex target-language phrase, as in or the category our algo-
rithm assigns to the target-language phrase is usually perfectly ade-
quate. For example, postwar (as an attributive adjective) would have
category N/N, nach dem Krieg would get N\ N, and this is exactly the
right category for noun modifiers, regardless of their internal structure.
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The same argument applies in the opposite direction, when a source-
language phrase is composed to provide the category for a single target-
language word.

and are examples of English verbs corresponding to Dutch
adjectives, where the Dutch uses a copula. The linguistically most ade-
quate solution would be to “split” the category of the English verb into
(S[dcl]\NP)/(S[adj]\NP) for the copula and S[adj]\ NP for the adjec-
tive, similar to Figure However, this is beyond the capabilities of
our algorithm. What it can do is treat the copula as skipped and assign
the Dutch adjective the verbal category. While this works, it can lead
to a noisy target-language lexicon where there is no clear link between
the part-of-speech of a word and its category, and its interpretation may
express features such as tense that are not actually marked on the word,
only on the aligned English one in some examples. In the opposite di-
rection, this problem does not occur, e.g., composing is fond of yields
the category (S[dcl]\NP)/NP, which is exactly right for aime.

6.5.4 Head Switching (Promotional and Demotional
Divergences)

Head switching (subdivided by Dorr into promotional and demotional
divergences) is a type of divergence whereby in one sentence, a semantic
contribution is made by an adjunct to a phrase (e.g., an adverb to a verb
phrase), and in the other sentence, it is made by the head of an addi-
tional phrase embedding the corresponding phrase (e.g., an additional
verb phrase embedding the corresponding verb phrase). The examples
are:

(26) a. Hehappens to beill
b. Hijis toevallig ziek
(27)  a. Jean will probably come
b. Il est probable que Jean viendra
(28) a. Thebaby just fell
b. Le bébé vient de tomber
(29) a. Anattempted murder
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b. Une tentative de meurtre

(30) a. Helikesreading
b. Er liest gern

The beauty of CCG in this case is that both structures receive struc-
turally very similar analyses: whether a phrase « is modified by an ad-
junct 8 or embedded as an argument of another head §3, in both cases
CCG will analyze 3 as a functor taking « as an argument. For example,
the modifier gern in[(30-b)|takes the VP liest as argument and returns an-
other VP, and the same is true for the matrix verb likes and the VP reading
in[(30-a)} Our algorithm thus produces derivations with the same inter-
pretation for likes and gern. Similarly, happens to (after composing) can
provide the category and interpretation for the adverb toevallig, and II
est probable que, vient de and tentative de can all be treated as words-with-
spaces with categories and interpretations from the corresponding En-
glish modifiers.

Thus, under the CCG analysis, head switching is almost a non-di-
vergence. The remaining divergence is in the morphosyntactic features:
modifiers such as gern map VPs of any type to VPs of the same type
whereas VP arguments usually have types like S[ng]\ NP or S[b]\ NP. In
we would obtain the category (S[dcl]\ NP)\(S[ng]\NP) for gern. To
a syntactician familiar with German, this is simply wrong: the adverb
gern does not require the verb it modifies to be in present progressive
form (ng) nor does it necessarily occur in a finite or declarative (dcl) VP,
nor is it even clear that this categorization of VPs makes sense for Ger-
man. Similar considerations apply to the other examples. Thus again,
future work on more informed treatment of target-language syntax may
lead to grammars that generalize better.

6.5.5 Conflational Divergences

Conflational divergences occur when one sentence expresses in one or
more words what another expresses in multiple words. Simple vs. com-
pound nouns are among the most straightforward examples, easy to
deal with by composing in one direction, and words-with-spaces in the
other direction:
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(31) a. Piscina
b. Swimming pool

There are also conflational differences involving a target-language verb
whose source-language translation consists of a verb plus additional el-
ements such as VP modifiers:

(32) a. Getupearly
b. Madrugar
(33) a. John called up Mary
b. John a appelé Mary
(34) a. Seeagain
b. Revoir
(35) a. Go out again
b. Ressortir
(36) a. Know how
b. Savoir

Our algorithm normally deals with these cases by combining the cate-
gory and interpretation of the source-language words through the Cowm-
POSE operation.

The opposite case is source language verbs expressed in the transla-
tion as a verb with some modifier:

(37) a. Miss

b. Sentir a falta
(38) a. Float

b. Aller en flottant

Here, the target-language words can be treated as a word-with-spaces,
but only if they all appear contiguously, which is often not the case, for
example:

(39) a. We floated east
b. Nous allions a I'est en flottant



6.5. Handling of Translation Divergences 167

Here, our algorithm as it stands is unable to find an adequate target-
language derivation. A more intelligent SpLit operation as sketched in
Section would be required.

The following example is like[(38)]in that part of the semantic content
of the English verb is expressed by a target-language VP modifier, but
adds the twist that conversely, the content of the English modifier is
expressed by the target-language verb.

(40) a. Walk across
b. Traverser a pied

If we align the words mainly by semantic content, in principle we could
give d pied a verb category and traverser a VP modifier category, although
this would lead to odd lexical items very specific to this construction.
The corresponding entry for walk, for example, could not be used in a
simple VP like walk happily. Here, a finer-grained semantic analysis of
lexical items would be required.

6.5.6 Lexical Divergences

It is a basic fact of translation that a good translation of a single word
in some context is not necessarily a good translation of the same word
in another context. Words are homonymous and polysemous, and the
mapping of words to senses is not isomorphic for any two languages.
Thus, the choice of target-language word in machine translation is a
hard problem, and so is the choice of lexical interpretation in semantic
parsing. Here is a basic example where free has two different senses
(and two different German translations):

(41) a. The suspect is free again

b. Der Verdachtige ist wieder frei
(42) a. Thelunchis free

b. Das Mittagessen ist gratis

Sometimes the choice of interpretation and translation for some word
is informed by other divergence types, e.g., in the following example
of categorial divergence (Dorr, [1993| p. 264-265), we might produce a
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derivation in which the German habe (literally: have) is interpreted like
the English am.

(43) a. Iamhungry
b. Ich habe Hunger

Dorr calls this a lexical “divergence” apparently because habe is not a
“literal” translation for am and only adequate due to the presence of
that categorial divergence. Similarly, she presents like as a lexically di-
vergent translation for gustar (literally: please) in the context of a the-
matic divergence and dar (literally: give) for stab in the context of a con-
flational divergence. But since the problem of interpretation (and, in
machine translation, lexical choice) always arises, whether or not due to
other divergences of other types, it is questionable whether it is worth
distinguishing such cases as another divergence type. Our algorithm
does not need any special mechanisms to deal with lexical divergence
because lexical items with different, and sometimes “non-literal”, word-
sense mappings, fall out from it.

Arelated issue is that of word alignments. Until now, we have treated
these as given—an assumption we will be doing away with in the next
chapter.

6.6 Conclusions

In this chapter, we have investigated the problem of projecting a se-
mantic parse from a sentence to its translation automatically, given a
suitable word alignment. For doing this, it is advantageous to have se-
mantic parses based on a grammar formalism which supports a high
degree of parallelism in the analysis of both languages, as this reduces
the number of choices to make (e.g., what is a constituent, what are
the labels of constituents). We find that CCG, with its small, rather
language-independent set of basic categories, and its flexible notion of
constituency, fits this bill nicely. The algorithm developed in this chap-
ter, projecting CCG derivations from a source-language sentence to its
target-language translation, demonstrates this.
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We have shown that the algorithm even works with translations that
exhibit thematic, structural, categorial, head-switching and conflational
divergences. There are, however, limitations: thematic divergences can
lead to awkward analyses that miss appropriate generalizations for the
target-language grammar. Structural divergences involving source-lan-
guage function words with no target-language equivalent are not han-
dled adequately yet and would require insertion of empty elements
or special type-changing rules for the target language. For categorial
and conflational divergences where the target language is more ana-
lytic than the source language, the algorithm lacks a way of splitting
categories and interpretations in an appropriate way and therefore cre-
ates noisy lexical constituents that generalize poorly. Morphosyntactic
features are language-specific and also give rise to poorly generalizing
lexical entries.

The purpose of projecting CCG derivations is cross-lingual training
of semantic parsers. In order to put this into practice, we will have to
deal with the above limitations, as well as noisy word alignments and
non-literal (e.g., informative, loose and idiomatic) translations. We will
tackle this challenge in the next chapter.






Chapter 7

A CCG Approach to
Cross-lingual Semantic
Parsing

7.1 Introduction

This chapter aims to show that cross-lingual learning can help create
semantic parsers for new languages with minimal human intervention.
We present a method that takes an existing (source-language) seman-
tic parser and parallel data and learns a semantic parser for the target
language.

Tackling the problem of learning a semantic parser in this way may
seem roundabout, but it has potential advantages. Explicit training data
for a complex task like semantic parsing is scarce and costly to obtain.
Parallel data is more readily available. If an existing semantic parser
for one language is available, meaning representations can be obtained
cheaply and in big numbers. Although the output of this system will
not have the quality of human annotations, it may be able to make up
for quality by quantity.

We have seen in Chapter [6|that CCG derivations can in many cases
be projected automatically from source-language sentences to their tar-
get-language translations. We make use of this to obtain target-langu-

171



172 Chapter 7. A CCG Approach to Cross-lingual Semantic Parsing

age derivations and train a statistical parser on them. However, the
derivation projection algorithm we developed so far is not yet practi-
cal because it relies on perfect, unambiguous word alignments, which
are difficult to obtain. In Section we describe our method, making
use of a more robust solution. In a first step, category projection, target-
language words are assigned categories and interpretations. In a second
step, derivation projection proper, target-language derivations are built.
The third step of our method, parser learning, is then concerned with
creating the actual semantic parser for the target language.

Our method is in principle applicable to all parsers producing in-
terpreted CCG derivations. It is independent of the concrete meaning
representation formalism used, as long as meaning representations are
assembled in the standard CCG way (cf. Chapter |2) using the lambda
calculus.

We evaluate our method in Section [7.3]by applying it to English as
source language, Dutch as target language and Discourse Representa-
tion Theory as meaning representation formalism, and measuring the
performance of the obtained Dutch semantic parser.

7.1.1 Related Work

In Chapter (3] we reviewed the literature on semantic parsing. In the
present chapter, we present a method inspired in particular by |Zettle-
moyer and Collins (2005) in that we (over)generate candidate CCG lexi-
cal entries (through manually specified templates in their case and cross-
lingually via word alignments in our case) and let a parser training algo-
rithm figure out which ones to use and in which contexts. However, that
approach was only applied to narrow-coverage domains. For broad-
coverage parsing, as we have seen, until very recently, all work relied on
a manually crafted semantic lexicon for the language to be parsed. We
do not wish to assume this for the target language. All broad-coverage
semantic parser learning work that we are aware of also relies on an
existing syntactic parser to constrain the search space or to provide fea-
tures. We do not wish to assume this either, because our method should
be applicable to under-resourced languages. Our approach does as-
sume an external syntactic and semantic parser for the source language,
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but not for the target language. The approach perhaps most similar to
ours is that of |Artzi et al| (2015) because it also uses CCG. It cannot
directly be applied in the cross-lingual setting, though, because it em-
ploys a hand-crafted, language-specific seed lexicon. Unlike theirs, our
method currently still lacks any treatment of non-compositional phe-
nomena such as anaphora resolution.

Cross-lingual learning has previously been applied to different na-
tural-language processing tasks, notably part-of-speech tagging and de-
pendency parsing. Three families of approaches can be distinguished.
In annotation projection, existing annotations of source-language text
are automatically projected to target-language translations in a parallel
corpus; the result is used to train a target-language system (Hwa et al.,
2005; [Tiedemann, 2014). In model transfer, parsers for different lan-
guages share some of their model parameters, thereby using informa-
tion from annotations in multiple languages at the same time (Zeman
and Resnik, 2008; Ganchev et al., 2009; McDonald et al., 2011; Naseem
et al.,[2012; Tackstrom et al.,[2013). The translation approach pioneered
by Tiedemann et al. (2014) is similar to annotation projection, but in-
stead of relying on existing translations, it automatically translates the
data and synchronously projects annotations to the translation result.
Our approach falls within the annotation projection family, with the
new challenge that entire CCG derivations with logical interpretations
need to be transferred.

7.1.2 The Problem of Noisy Word Alignments

In Chapter[6] we developed an algorithm for projecting source-language
CCG derivations to target-language translations—but we assumed per-
fect, unambiguous word alignments. Such alignments could perhaps
be obtained through costly, painstaking manual annotation, but that
would defeat our goal of adapting semantic parsers with little to no hu-
man intervention. So we have to make do with automatically induced
word alignments.

Automatically induced word alignments in parallel corpora are his-
torically a byproduct of word-based models for statistical machine trans-
lation. The most widely used such model is IBM Model 4 (Brown et al.,
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1993). It uses probability distributions for how many target-language
words each source-language word translates to (fertility), which words
these are (translation probabilities) and how far their position in the tar-
get sentence is removed from the position of the source-language word
in the source sentence (reordering or distortion probabilities). These
distributions are usually estimated over a sentence-aligned (but not oth-
erwise labeled) parallel corpus using the EM (expectation maximiza-
tion) algorithm. Once they are estimated, the most probable alignment
(the Viterbi alignment) for any sentence pair can be found. It represents
the model’s best guess as to which words in the target sentence are trans-
lations of which word in the source sentence. As such, it can be used to
make a bilingual dictionary: each translation unit in a Viterbi alignment
indicates a probable translation for the source word. This is done, e.g.,
in phrase-based statistical machine translation (Koehn et al., 2003), and
we will use it to induce CCG lexical entries for the target language.

NP: IVdcl]: (IV\IV)/IV[ng]: IV[ng]/IV[pt]: IV[pt]/NP: NP/N: N:
M [died] [without] [having] [made] [a]  Juwill]
He died without having made a will

Hij stierf zonder een testament opgesteld te hebben

Figure 7.1: Two different word alignments, only partially correct.

Automatically induced word alignments are not perfect. Consider,
for example, the sentence pair in Figure Solid lines show the Viterbi
alignment resulting from training a Model 4 using the GIZA++ imple-
mentation (Och and Ney, 2003) with default settings on our training
data, with English as source language and Dutch as target language.
Some translation units are correct (Hij/He, died/stierf, without /zonder),
other translation units are incorrect (e.g., having is aligned to een testa-
ment opgesteld, which means made a will), and some are missing. For
example, no Dutch word is aligned to the important word will, so the
ArrcorstrAP algorithm from Chapter 6 could not even create an incor-
rect derivation with the correct interpretation.
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We can consider alternative alignments. For example, the dashed
lines represent the 3rd-best alignment according to GIZA++ run in the
reverse direction, with Dutch as source and English as target. Here, tes-
tament is aligned correctly to will, although we are still missing a correct
alignment for een. It seems we should not rely on one alignment alone
to get all lexical entries needed for making a target-language derivation,
but need to gather translation units from multiple alternative align-
ments.

With these ideas, let us move on to the detailed description of our
method.

7.2 Method

We start with a parallel corpus of sentence pairs whose source-language
part has been annotated with semantic CCG derivations by the source-
language system. We use this annotation in two ways: first, to induce
a target-language lexicon in a first step called category projection. Sec-
ondly, we use it as a form of indirect supervision: we assume that the
source-language system works mostly correctly, and that if two sen-
tences are translations of each other, they should have the same inter-
pretation—thus we can train the target-language parser to produce the
same interpretations as the source-language parser. To this end, we try
to find target-language derivations resulting in the same interpretations
as the source-language ones, based on the target-language candidate
lexical entries found in category projection. We call this second step
derivation projection. The derivations thus found are used to train a
statistical parsing model for the target language. We call this third step
parser learning.

All three steps make use of a shift-reduce CCG parsing system which
we describe in Section[7.2.T]before moving on to describe the three steps
in detail: category projection in Section derivation projection in
Section and parser learning in Section [7.2.4}
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721 An Extended Shift-reduce Transition System for CCG
Parsing

In recent years, transition-based techniques which process linguistic in-
put incrementally have all but taken over syntactic parsing. Their chief
advantage is that they work in linear time (Nivre, 2003)—as opposed
to chart parsers which work in cubic time—while empirically boasting
the same or better accuracy (Zhang and Nivre, 2011; Bohnet and Nivre,
2012; |Weiss et al., 2015). They also form a more cognitively plausible
model of human sentence processing since humans are known to pro-
cess linguistic input incrementally and with limited memory (Keller,
2010). Transition-based parsers have also successfully been applied to
semantic parsing (Zhao and Huang, 2015} Berant and Liang), 2015), and
so does this work.

The transition-based parsing algorithm used is very similar to the
syntactic shift-reduce CCG parser of Zhang and Clark (2011), but ex-
tended with the capabilities to skip semantically empty words and to
use multiwords. It is a transition-based parser, i.e., it works by explor-
ing a search tree of parser items. Like most transition-based parsers, it
is also incremental, i.e., each parser item represents a state of the parser
where a prefix of the sentence has already been processed, and the rest
has not yet been processed, and for each item, the processed prefix is
longer or equal compared to its predecessor. Items are either unfinished
or finished. A finished item corresponds to a parse found by the parser.
It typically contains a single parse tree spanning the entire sentence but
can also contain a fragmentary parse consisting of multiple trees, each
spanning a substring of the sentence.

In our parser, items take the form (S, @, F'). S is a list called the stack.
It contains trees (CCG derivations) covering substrings of the processed
prefix. @ is alist called the queue. It represents the suffix of the sentence
that has not yet been processed. F' € {0, 1} indicates whether or not the
item is finished.

In Chapter 2, we defined a CCG as a triple (L, U, B) where L is the
lexicon and U and B are the sets of unary and binary rule instances.
Given such a triple and a sentence wjws . .. w,, the initial item is ((),

Wiy ... Wj

(L1,La,...,Ly),0) where L; = { i | wiwiy1...w; :=C:I € L,i <
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j < n}. Thatis, the stack is initially empty and the queue is initialized to
contain a set for each position in the sentence, containing all the lexical
constituents, including multiwords, that could start at this position.

We define the function succy,p which maps each item to the set of
its immediate successors in the search tree. Each successor is generated
by one of six types of parser action:

e sHIFT-C-1. This action selects a lexical entry with category C and
interpretation I from the candidates at the beginning of the queue
of an unfinished item, places it on top of the stack and removes
the prefix of the appropriate length from the queue. Formally:

for every item ¢ = ((s1,52,...,5m), (Qks Qk+1,---,qn),0) and ev-
el‘y - *':‘I"" : € qk, <<817 82, .., 8m, - k?l "’>’ <QP+17 e 7Q71>70> €
succy, (7).

e skir. To apply a sHIFT action is to select between the different pos-
sible lexical entries for the beginning of the queue, including the
choice between single words and multiwords and between dif-
ferent possible categories and interpretations, as specified by the
lexicon. If available, the sHirFT action can also select the skip cate-
gory. A constituent with this category needs to be removed from
the top of the stack before further actions can be applied because
no binary or unary rules accept it as input. This is the sole pur-
pose of the skip action. Formally: for every item i = ((s1,s2, ...,

Wi

Sm—1s sz ), @, 0), ({51,582, ..., 5m-1),Q,0) € succy p(i).

e BINARY-d-C. This action looks at the top two constituents on the
stack of an unfinished item, and if that item was not produced by
a skip action and there is a binary rule in the grammar matching
their categories, it applies the binary rule, replacing the two con-
stituents with a single combined constituent. Formally: for every
item i = ((s1,82,...,an, an),Q,0) that was not produced by a
skIp action and every rule instance C: I} Cy: I, = C:1 € B

which is an instance of the rule schema R, {({(s1 ,s2, ..., ﬁq%
C:I

@, 0) € succy,p(i). d € {L,r} indicates whether the left or lfight
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input constituent has the lexical head, serving to guide the par-
ser’s choice of lexical features for statistical models. The input
constituent with the lexical head is the left one for forward rules
and the right one for backward rules, except when that input con-
stituent is a modifier, in which case the other input constituent has
the lexical head.

UNARY-C'. This action looks at the top constituent on the stack of an
unfinished item. If that item was not produced by a skip action and
there is a unary rule in the grammar matching its category, it ap-
plies the unary rule, replacing the constituents with the resulting

constituent. Formally: for every item ¢ = ((s1, s2,. .., ﬁ), Q,0)
not produced by a skip action and every C;: Iy = C:1 € U
which is an instance of the rule schema R, ((s1, s2, . . ., 3 ), @Q,0) €

C:
succy,B(4).

FINIsH. This action can take any unfinished item with an empty
queue, turn it into a finished item and thereby declare it to be
parser output. Formally: for every item i = (5, (),0), (5, (),1) €
succy, (7).

ibLE. This action produces an identical item as successor of each
finished item. It was introduced by (Zhu et al., [2013) because
it makes it easier to compare parser outputs with different dis-
tances from the search tree root in scoring. Being able to retrieve
all parser outputs at the same search tree depth also simplifies the
formulation of the parsing algorithm. Formally: For every item

L= <57 Q) 1>I <S) Q7 1> € SUCCU,B(Z')'

Nothing else is in succy (i) for any item 7.
Figure [7.2] shows part of the search tree for the sentence het leven

zuigt (life sucks) under some hypothetical lexicon that we might derive
for Dutch in cross-lingual semantic parsing. The initial queue contains
separate lexical entries for the words het and leven as well as a combined
lexical entry treating them as a word-with-spaces. This results in two
parses with the same interpretation. Items at the same search tree depth
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<< viig 0 L st 15 0)

Pl aliie]
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BINARY-7-S J
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<< NP:[life] S|NP: [sucks] >7 <>’ 0>
z'\/]’:[[the]]@[lif:]]
R <0
S:[sucks]a([the]@[life])

FINISH J{

leven,ounsy  ZUigtuerbpressg
<< NP:[life] S|NP:[sucks] >7 <>7 1>
NP: [[[he]]ﬂl|[ll/e]]
5: [sucks]a([the]allife]) <

\{IIj‘T—N-[[life}]
(R ({1, 0)
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<1’\€tder,mr leven,ounsg > < ZUigtyerbpressg } 0>
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J SHIFT-S| NP-[sucks]

< <hetm7(m leven,ounsg Zuigtmbpmsg> <> 0>
[life] S S|NP:[sucks] /9 \/?

NP:[the]a[life]

J BINARY-7"-S

hetgerart leven,ounsg  ZUigtuerbpressy
<< N:[life] S|NP:[sucks] >7 <>7 0>
NP:[the]@Q[life] )
S [sucks] a([the]a[ife])

J FINISH
< < hertleﬁiml leven,ounsg  ZUigtuerbpressy > <> 1>
N:[life] S|NP:[sucks] /9 \/

NP: [[m(]] life]
S:[sucksla([the] aLlife])

J{ IDLE

hetaer_art levennounsy  ZUigtuerpressy
<< N:[life] S|NP:[sucks] >’ <>7 1>
NP:[the]@[life]
S:[sucks]@([the]@[life])

J{ IDLE

heti_ort 1eVeNpungy Zuigtiertpresss
<< N:[life] S|NP:[sucks] >7 <>7 1>
NP:[the]@ |[llf€]]
5 sucks|a([thelalie])

Figure 7.2: Parser items for the sentence het leven zuigt (life sucks).
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S[del]: ([likes]Q([to] Q([read]@[books])))Q[she]

0
S[dcl]\NP:[likes]Q([to] Q([read] Q[books])) io
S[to]\NP:[to] Q([read]Q[books])
S[b]\NP:
[read]@[books]
NP: S[dcl]/(S[to]\NP): (S[to]\NP)/(S[b]\NP): (S[b]\NP)/NP: N]%:
[she] [likes] [to] [read] [books]
She likes to read books
Zij leest gra\le\lg boeken
NP: (S|NP)|NP: (S|NP)|(S|NP): NP:
[she] [read] Az.[likes]Q([to]Qx) [books]

Figure 7.3: Category projection: word alignments induce candidate
bilingual phrases, these induce candidate categories and interpretations
for target-language words. Correct translation units are shown as solid
lines, incorrect ones, dashed or dotted.

are said to belong to the same generation. Note that the parse on the right
completes two generations earlier than the one on the left and uses the
IDLE action twice to reach the last generation. Items not leading to a
non-fragmentary parse are omitted for space reasons.

7.2.2 Step 1: Category Projection

Category projection assigns candidate categories and interpretations to
target-language (multi)words in the training data. It thereby also in-
duces the target-language lexicon that we use in the subsequent steps.
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We first use a word alignment tool to create a set of candidate bilin-
gual phrases BP. Given a source-language sentence ejes - - - e, and its
target-language translation fi f> - - - f,,, a bilingual phrase is of the form
([i, 4], [k, 1)), 1 <i < j<m,1<k<I<n,ie, it consists of an inter-
val of source sentence word indices and an interval of target sentence
word indices. It represents the hypothesis that words e;e;y1...¢e; and
words [y frt1 ... fi are phrases with the same meaning. Phrases can be
derived from word alignments using sophisticated techniques (Och and
Ney, 2004), but for now we use only phrases corresponding to (contigu-
ous) translation units, thus i = j V k = [. Specifically, we use the N best
alignments according to GIZA++ for both translation directions. An ex-
ample of a sentence pair with translation units from multiple alternative
word alignments is shown in Figure For this example,

BP = {([1,[1]), ([2,3], [3]), (12], [31), ([4], [2]), ([5], [4]) }

We then find the category and interpretation corresponding to each
bilingual phrase. This is essentially the comPOsE step in ARFCOISTRAP: we
combine the words in e;e;11 ... e; using combinatory rules to obtain a
single constituent with a category and an interpretation. If i = j, this is
trivially the lexical constituent. Otherwise, we run the shift-reduce par-
ser to find such a constituent. The combinatory rule instances used for
parsing here are simply all that occur in any source-language derivation
for the training data. We denote the first category and interpretation
found for the phrase e;e;11 ... ¢, if any, as Cz-j and I Z] , respectively.

For every candidate bilingual phrase ([7, j], [k, l]) € BP for which
Cij and [ ZJ are defined, fi fry1-..fi is assigned a candidate lexical con-
stituent with category ConvCat(C?) and interpretation I]. The func-
tion ConvCat turns the source-language categories into the categories
we will use for parsing the target language. It replaces all slashes in a
category with |, eliminating directionality because word order might be
different in the target language. We also define it to remove all syntactic
features such as [dcl] or [pt] (see Section [2.3.1)) because these are specif-
ically designed for English whereas featureless categories are thought
to be more universal and to closely correspond to semantic types. We
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found in initial experimentation that leaving the features out slightly
improved results, so we adopted this practice. Target-language words
[ that are unaligned, i.e., not part of any bilingual phrase, are assigned
the special category skip and the identity interpretation Az.z. In our
example, five candidate lexical constituents are assigned (one for each
candidate bilingual phrase), four of which are shown at the bottom of
Figure[7.3

The target-language lexicon L that we extract is, to a first approx-
imation, the set of all lexical items L := C':I induced by the training
corpus in this manner. However, to prevent too many noisy items in
the lexicon, we apply a cutoff with factor c. That is, we only include
those items where the category/interpretation combination C : I oc-
curs at least ¢ times as often with the (multiword) L as the most frequent
category/interpretation combination for L—counting all /V alignments
for all training examples and both alignment directions.

7.2.3 Step 2: Derivation Projection

Derivation projection tries to build derivations for the target-language
sentences that have the same interpretations as the English translations,
using the candidate target-language lexical items found in category pro-
jection. For each training example, we only use the items extracted from
that exampleﬂ Thus, the initial queue for the shift-reduce parser is de-
fined as @ = (q1,42,...,qn) Wherefor 1 < k <mn,

_ MK[M]’ [k,1]) € BP and Cij is defined} U

qr = ConvCat(CY):T!

{Apf: there is no ([i, j], [k, []) € BP such that Cij is defined}

We must then find a derivation—or derivations—for the target-lan-
guage sentence, based on () and subject to the constraint that the inter-
pretation of the derivation be the same as that of the given derivation
for the source-language sentence.

'This includes some lexical items that did not make the cutoff and are not in L. It
would make sense to exclude those, however, we found it does not improve results, so
we left them in.
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Input: A parse item ¢ = <(ﬁ, Gty ﬁ),Q,F>

Input: A desired interpretation /

Output: 1 if i can lead to a finished item with a single derivation
with interpretation I on the stack, 0 otherwise

if F' =1 then

if k =1 A I, = I then
‘ return 1;
end
else
| return 0;
end
end
else
| return vsf (I, I);
end

Algorithm 7.1: ItreMCHeck: checking parse items against the desired
sentence interpretation.

The search space is generally too large to enumerate all finished
items. A first remedy is to prune away subtrees of the search tree that
cannot contain an item with the desired interpretation. For this, we use
the “valid semantic fragment” function vsf defined in Section[6.2.1} Our
function for checking items additionally requires that finished items
contain a single derivation whose interpretation is exactly equivalent
to the desired sentence interpretation. It is given as Algorithm[7.1]

Despite the pruning, sometimes the search space is still too large,
so a limit b’ governs how large the agenda is allowed to get. If it grows
larger, our algorithm aborts, returning no derivations.

The algorithm for finding target-language derivations is given as Al-
gorithm We call it ForcEDEcopE because we decode (parse) while
forcing the parser to find results with a certain interpretation. The idea
has previously been employed in semantic parsing by Zhao and Huang
(2015). Unlike them, we employ an agenda limit instead of a timeout in
order to make results more strictly replicable.
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Input: An initial queue Qg
Input: A target interpretation /
Input: Sets of rule instances U, B
Input: A agenda limit ¢/
Output: The set of non-fragmentary derivations with
interpretation I, or () if the agenda limit is hit
agenda < {((), Qo,0)};
while agenda contains unfinished items do
if |agenda| > b’ then
‘ return (;
end
else
agenda < {j|i € agenda N j €
succy,p(i) A ItTeMCHEck(j, 1) = 1};
end
end
return agenda

Algorithm 7.2: ForcEDEcoODE

Zij leest graag boeken
NP: (S|NP)|NP: (S|NP)|(S|NP): NP:
[she] [read] Az.[likes]|Q([to] @iv) [books]
(S|NP)|NP: X
Az [likes]|Q([to] Q([read]@Qzx)) o
S|NP: [likes]@([to] @([read]@[books])) ZU

S:([likes]Q([to]Q([read]@[books]))) Q[ she]

Figure 7.4: Derivation projection: combinatory rules are applied with
the constraint of finding a derivation with the same interpretation as
the source-language sentence.
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The sets of rule instances Uy, B given to ForceEDEcope must be suit-
able for the target language and take into account that we verticalized
all slashes and removed syntactic features. They are constructed from
the source-language rule instance sets U,, B, as follows:

Ur = {ConvCat(Y):I = ConvCat(Z2):K |Y:I = Z:K € U}
By = {ConvCat(X):I ConvCat(Y):J = ConvCat(Z):K,
ConvCat(Y):J ConvCat(X):I = ConvCat(Z): K
| X:I Y:J= Z:K € B.}

Note that two new rule instances in By correspond to each old rule
instance in B.: one with the original order of input categories, and one
with the reversed one, implementing the intended meaning of the ver-
tical slash—both orders are allowed. Note also that this does not quite
double the number of rule instances because ConvCat maps some cat-
egories to the same category. For example, the two rule instances in (T)]
both give rise to the same set of verticalized instances, namely that in

(2)

1) a.  (S/S):f S:a= S:(fQa)
b. S:a (S\S):f = S:(fQa)
2 a.  (S]S):f S:a= S:(fQa)
b. S:a (S|S):f = S:(fQa)

Figure [/.4{ shows a resulting projected derivation for our example sen-
tence.

7.2.4 Step 3: Parser Learning

In parser learning, we use the target-language derivations found in de-
rivation projection to train a semantic parser for the target language.
Every training derivation D produced in derivation projection de-
fines a unique simple path from the root of the search tree to the highest-
in-the-tree item ((D), (), 1), i.e., it defines a sequence of parsing actions.
For a given training example, we consider each action sequence lead-
ing to a derivation with the target interpretation as “correct”, others as
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“incorrect”. Accordingly, parse items lying on the path of some cor-
rect sequence are “correct”, others “incorrect”. The task is now to train
a parsing model that can be applied to an unseen target-language sen-
tence and, among the many possible parses, pick out the one most likely
to be correct. With our transition-based parsing system, this amounts
to picking a simple path from the root of the search tree, at each step
picking the parsing action most likely to be a correct one.

We follow |Zhang and Clark|(2011) in defining a global linear model
factored by parsing steps. In this model, every parsing step is repre-
sented as a set of features, and the model scores each such set of features
individually. Each “step” consists of a predecessor item ¢ and a parsing
action a which is applied to i to produce a successor item j. To map a
step to a set of features, we first define a number of slots. A slot picks
out a certain part of the structure of a step, if that part exists for the step.
We first define the following macroslots:

® o, Q1,Q2, Q3: pick out the words at the first four positions left to
process in the sentence.

o 53,952,851, So: pick out the four rightmost constituents on the stack.

o S3U, SoU, S1U, SpU: in case of unary constituents, pick out their
daughters.

o S3H,S2H,S1H, SoH: in case of binary constituents, pick out their
head daughters. The head daughter is the one that is the functor,
except if that is a modifier, in which case the argument is the head
daughter.

e S3R,S2R, S1R, SoR: in case of binary constituents where the head
daughter is on the left, pick out their nonhead daughters.

e S3L,S52L,S1L,SyL: in case of binary constituents where the head
daughter is on the right, pick out their nonhead daughters.

For every macroslot T, the following microslots are defined, picking
out substructures of the structures picked out by the macroslot:
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e T'c: picks out the category of a constituent.

e Tw: picks out the word form of (the head word of) an element. A
lexical constituent immediately contains its head word. The head
word of a unary constituent is that of its daughter. The head word
of a binary constituent is that of its head daughter. In the case of
constituents on the stack, the head word may be a multiword.

e T'p: picks out the part-of-speech tag of (the head word of) an ele-
ment. I the case of constituents on the stack, the head word may
be a multiword, and its part of speech a string of parts of speech.

e A: picks out the parsing action taken.

Feature template names are concatenations of microslot names, leav-
ing out repeated macroslot names. We use the same templates as|/Zhang
and Clark/(2011), shown in Figure

For a given parsing step consisting of item 7 and action q, a feature
template extracts nothing if some of its macroslots do not extract any-
thing. Otherwise, it extracts a feature that is the concatenation of the
template name and all the values extracted by its microslots.

In addition to these features, if @ is a sHIFT action, we also extract
a lexical feature that is the concatenation of the shifted lexical constit-
uent’s (multi)word, part of speech, category and interpretation. The
purpose is to enable the model to learn to prefer certain lexical entries
over others, even if they are only semantically different.

We define the feature extraction function ¢ such that ¢(i, a) returns the
feature set of the parsing step as a vector of 0’s and 1’s, where globally
every unique feature is mapped to a position in the VectorEI

The feature vector ®(j) of a parsing item j is defined as follows: it is
0 for the initial item. For any other item j, generated from predecessor
item ¢ with action a, ®(j) = ®(i) + ¢(i,a), i.e., the sum of the feature
vectors of all steps leading up to it.

2Since our implementation uses a hash kernel (Bohnet, 2010) for this mapping, that
position in the feature vector is not necessarily unique, although it is unique for most
if not all features occurring in practice.
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Input: A list Y of pairs of sentences and sets of “correct” action
sequences
Input: A CCG (L,U, B)
Input: A feature function ® mapping parse items to feature vectors
Input: A beam width b
Input: A number of iterations T’
Output: A weight vector o
@« 0;
sim <+ 0;
count <+ 0;
foreach ¢t € [1,T] do
foreach (wyws ... w,,S) €Y do
Q<+ (q1,q2, -, qn) Where ¢; = {1 |
WiWitq - .. W 1= C:Ie Lt >35> ’I’L},‘
agenda « {{(),Q,0)};
while agenda contains unfinished items do
agenda’ < {jli € agenda A j € succy p(i)};
For every item i € agenda’, calculate its score @ - ®(i);
Drop all but the b highest-scoring items and the
highest-scoring finished item from agenda’;
if {i € agendd’|iis correct according to S} = () then
‘ break; // Early update
end
else
‘ agenda < agenda’;
end

end

1* =« argmax ®(1) - 7;

i’ argMaX;e fjeagendalj is correct according to S} w - @(2),
W+ W+ P(i") — ®(i*); // perceptron update
sum < sum -+ ;

count < count + 1

i€agenda

end

end

return suin/count; // averaged perceptron
Algorithm 7.3: BeamMTRrRAIN
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SowpA, SocA, SopcA, SqwcA,
S1wpA, S1cA, S1pcA, SqwcA,
SopcA, SswcA,
SapcA, SswcA,

QowpA, QrwpA, QwpA, QzwpA,

SoLpcA, SoLwcA, SoRpcA, SoRwcA, SoUpcA, SoUwcA,
S1LpcA, SiLwcA, S1RpcA, S1RwcA, S1UpcA, SiUwcA,

SoweSi1weA, SoeS1wA, SqwS1cA, SogeSicA,
SowcQowpA, SocQowpA, SowcQopA, SocQopA,
S1weQowpA, S1cQowpA, SiwcQopA, S1cQopA,

SoweS1cQopA, SocSiweQopA, SocS1cQowpA, SocS1cQopA, SopS1pQopA,

SowcQopQ1pA, SocQowpQ1pA, SocQopQi1wpA, SocQopQ1pA, SopQopQ1pA,
SoweS1eSacA, SoeS1weSacA, SoeS1eSswcA, SoeS1eSacA, SopS1pSapA,

S()CSQHCS()LCA, SQCSQHCSQRCA,
51851H051RCA,

SoCSORCQopA, S()CSQRCQ()UJA,
SoCSOLcsch, S()CS()LCSfUJA,
S’ocSlcSchA, S()U)51€S1RCA

Figure 7.5: The feature templates used by our parsing model, adapted
from|Zhang and Clark|(2011).

Given a weight vector @ with the same length as the feature vectors,
j then has a score w- ®(j). For a good parsing model, we need to find a &
such that correct items score high and incorrect items score low. We do
this, again following (Zhang and Clark, 2011), using using the averaged
perceptron (Collins, |2002), implemented in Algorithm The weight
vector starts out as 0 and is then updated iteratively. In each iteration,
the search tree for each training example is first explored with beam
search, keeping the b items on the agenda that score highest according
to the current .

The exploration ends when only finished items remain on the agenda.
If the highest-scoring of them is indeed correct, the model made the cor-
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rect predictions in this instance. If there is a correct item ' but also an
even higher-scoring incorrect item :*, our model is probably scoring the
features of i’ too low and those of i* too high. A perceptron update then
counteracts this by increasing the weights for the former and decreasing
those for the latter, simply by adding ®(i") and subtracting ®(i*). Since
this update is only possible if a correct item exists, we perform an early
update (Collins and Roark, 2004) just before the last correct item would
drop off the agenda, even if there are still unfinished items. The final
weight vector is obtained by taking the mean of its values after every
training example in every iteration. The grammar used for training is
(L, Uy, By)-

Input: A sentence wiws ... wy,

Input: A CCG (L, U, B)

Input: A weight vector

Input: A beam width b

Output: An item containing a (possibly fragmentary) derivation

WiWis] - . Wy

Q « {q1,q2;- - -, qn) Where g; = {2
Wiwiq1 ... w; :=C:I € L,i>j>n};
agenda + {((),@,0)};
while agenda contains unfinished items do
agenda’ <+ {jli € agenda A j € succy p(i)};
For every item i € agenda’, calculate its score ®(7) - w;
Drop all but the b highest-scoring items and the
highest-scoring finished item from agenda’;
agenda < agenda’;
end
return arg max

i€agenda (I)(Z) 0
Algorithm 7.4: BEAMDECODE

Once 0 is trained, it can be applied to unseen data, attempting to
find the highest-scoring item for a given sentence. We also use beam
search for this, as shown in Algorithm

Test data invariably contains a number of out-of-vocabulary (OOV)
words that do not have entries in L ;. We need to ensure that parses can
nevertheless be found for sentences containing them, and that their in-
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boeknounsg = N:[book]
getuige,ounsg = N:f
where
[book] = Az book.n.01(x)
F= A% —ONKNOWN (@)

Figure 7.6: A regular lexical entry for a seen word and a schematic lex-
ical entry for an unseen word.

terpretations are mostly correct as far as possible. We do this by adding
a schematic lexical entry for every OOV word w, based on entries for
similar words. Concretely, we look at all single-word entries v’ := C'"
I' € Ly where v’ has the same part of speech as w. We add an aux-
iliary lexical entry w := C':I for w for every such C, leaving it to the
parsing model to choose the best category. To determine I, we look at
all \-DRSs I’ and make them “schematic” by replacing names, synset
IDs, roles, relations and cardinalities by the _ UNKNOWN__ symbol.
The most frequent schematic interpretation thus generated is selected
as I. For example, Figure |7.6| shows a lexical entry for the word boek
(“book”) whose A\-DRS shares a common structure with the majority of
single-word entries with part-of-speech nounsg and category N. The
OOV word getuige (“witness”) is accordingly assigned a DRS with the
same structure and a dummy synset ID. The grammar used for decod-
ing is thus (L', Uy, By) where L is Ly extended with the schematic
lexical entries for unknown words in the test data.
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7.3 Experiments and Results

7.3.1 Data and Source-language System

We have seen in Chapter[f]that our approach of projecting CCG deriva-
tions from one language to the other can handle a wide range of trans-
lation divergences. However, it does build on the assumption that the
meanings of parallel sentences are exactly the same, so to generate high-
quality training data with it, sentence pairs should be relatively literal
translations of each other, as opposed to informative or loose transla-
tions (Bos| [2014) or translations using complex idiomatic expressions.
Such literal pairs can be found, for instance, in resources aimed at hu-
man language learners, which pair example sentences with translations
in a language that the learner is already familiar with. One such re-
source is Tatoeba (https://tatoeba.org), based on the Tanaka corpus
(Tanaka, 2001).

We use 16,404 English-Dutch sentence pairs from Tatoeba, randomly
divided into 13,122 for training, 1,639 for development and 1,641 as fi-
nal test set, of which a random sample of 150 sentences was manually
annotated to serve as a gold standard.

The source language system whose output we use for supervision
is the C&C/Boxer system (Curran et al., 2007), which takes English sen-
tences and produces CCG derivations with A\-DRS interpretations and
which is also used for producing the Groningen Meaning Bank (cf. Sec-
tion [5.4). We use the SVN repository version 2444, giving the options
--modal true --nn true --roles verbnet to best match the annota-
tion scheme described in Section Additionally, we made some mi-
nor modifications to Boxer’s code to better match the annotation scheme
for adjectives, adverbs, semantic roles and modals. Using this system,
we automatically annotated the English half of the data. The Dutch sen-
tences were POS-tagged using TreeTagger (Schmid, 1994, 1995).

7.3.2 [Evaluation Setup

Evaluation Metric How automatically produced meaning represen-
tations should be evaluated is an open question. However, a common
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named(x1 ,}‘_j_('_)fles;,;nam)' - nafﬁe’d(}gl, jones, ham)_:"
X2 g3;::/:: - ef T[] _:.:—:_\:~ ‘)(\2\‘63\\\ x4 €5
balkA0TR2y “[= | kicki.01(ed) 1™~~~ <[ balln.01o2) v | cake(xd)
seeai.f1(e3) agent(e4,x1) STl seen.01(e3) 1>~ see(e%
a (e3, x1) patient(e4,x2) | agent(e3, x1) | [ agent(e5,x1)
patient(e3, x2) patient(e3, x2) patient(e5,x4)

Figure7.7: Two example DRSs being compared. The example is adapted
from [Le| (2012). Matched boxes and referents are connected with dot-
ted lines. Matched conditions are connected with dashed lines, or solid
lines if they also appear under the same operator.

practice is to convert them into graphs and measure recall and precision
based on overlap between the expected graph and the obtained graph.
This was proposed by |Allen et al.|(2008) and implemented for Abstract
Meaning Representations by |Cai and Knight|(2013) and for DRSs by |Le
and Zuidema, (2012). We use the same metric and implementation as
Le and Zuidema. The metric, which we dub the DRS graph measure, can
be motivated as follows: we want to measure two things, firstly, that
the right predications are made about the discourse referents, and sec-
ondly, that they are made in the right logical context, i.e., embedded
under the right logical operator like negation, disjunction or implica-
tion. Intuitively, the DRS graph measure does this by assigning each
DRS condition shared between expected DRS and obtained DRS one
point, and one additional point if it appears under the same operator in
both DRSs. This is illustrated in Figure

The output of our parser is a stack with one complete derivation
or several fragmentary derivations, each with a A-DRS interpretation.
We convert these interpretations into a graph 7' (in case of fragmen-
tary derivations, the individual DRSs become connected components
of a disconnected 7'). The expected DRS G is converted into a graph



194 Chapter 7. A CCG Approach to Cross-lingual Semantic Parsing

G. Every (possibly nested) DRS, condition and referent is represented
by a node. Condition nodes are labeled with the corresponding pred-
icate or operator. Where a referent or DRS appears as an argument of
a condition, this is indicated by an edge from the referent or box node
to the condition node, labeled with the argument number (1 or 2). In
which box a condition appears is indicated by an unlabeled edge from
the condition node to the box node.

For graphs G and Gg, 2(G1, G2) is defined as the number of points
that G2 scores with respect to G1. The function computes a maximum
common subgraph isomorphism f from G5 to G; where nodes can only
be matched with nodes of the same type and nodes and edges with
labels can only be matched with nodes/edges with the same label. Note
that box nodes and referent nodes are unlabeled (they are labeled in the
DRS, but these labels are arbitrary) and therefore have to be matched
based on the structure of the graphs alone. We say that a condition node
cin Gy is counted if f(c) is defined and for every argument a of ¢, f(a)
is the corresponding argument of f(c) in G;. We say that a condition
node cin G+ is position-counted if it is counted and has a box predecessor
bsuch that f(c) has a box predecessor f(b) in G; thatis counted. G2 gets
one point for each counted node in it, and one additional point for each
position-counted node. Q(G1, G2) is then the total number of points.

For a system output graph 7" and a target graph G, recall, precision
and f-score are computed as follows:

. QG,T)
rec = Q(G.G)

. QG,T)
prec = QT, T)
0o 20(G, T)

For the example in Figure



7.3. Experiments and Results 195

oG Ty 8 o
rec = Q(G,G)_TE%_OA
QG T) B
prec = QT T) 20" 0.4
f1 = 20(G.T) 2°8 04911

QG,G)+QUT,T)  18+20

Baseline No comparable systems for Dutch as input language and
DRT as meaning representation language exist yet. To demonstrate the
effect of learning the parsing model, we defined a simple but informed
baseline system to compare our system against. This baseline does not
do any parsing but assigns target-language sentences interpretations by
assigning each word its most frequent candidate interpretation, as de-
termined in category projection (counting instances of candidate bilin-
gual phrases from the N-best alignments used). The resulting semantic
graph is highly fragmented.

Silver Standard We first measure how closely the output of our sys-
tem for Dutch resembles the output of C&C/Boxer for English on the
development/testing data. This gives an idea of how well our system
has learned to imitate the existing system, but has two problems: first,
it does not say much about the quality of the output because that of
C&C/Boxer is not free from errors, it is not a gold standard. Secondly,
the data contains idiomatic, informative and loose translations, in which
case we want the output of both systems to differ.

Gold Standard Therefore, we also measure how closely the outputs of
C&C/Boxer and our system resemble a hand-corrected gold standard
of 150 sentence/DRS pairs from the testing portion, for their respec-
tive input languages. The gold standard was created as follows. Two
annotators independently corrected 50 DRSs produced by C&C/Boxer
so that the DRSs represented the meaning of Dutch annotations. Inter-
annotator agreement at this point as measured by the evaluation met-



196 Chapter 7. A CCG Approach to Cross-lingual Semantic Parsing

ric was 67% f-score. Instances of disagreement were identified, with
29% related to WordNet senses, 22% to semantic roles, 16% to other
relations such as prepositional ones, 13% to the rendering of Dutch id-
ioms using English WordNet senses, 9% to modal and logical opera-
tors such as implication and negation, and 11% to other structural is-
sues such as nested DRSs. In an adjudication phase, both annotators
resolved the differences together and agreed on a common gold stan-
dard. A single annotator then corrected another 100 Boxer DRSs, which
were subsequently checked by the other annotator, and differences were
again resolved through discussion. One annotator finally also created
an adapted version of all 150 DRSs where in case of idiomatic, infor-
mative or loose translations, the annotation matches the English rather
than Dutch sentence.

7.3.3 Experimental Setup

Intuitively, the more training examples we can use, the higher our sys-
tem should perform in the end. How many training examples can be
used depends on n, the number of n-best alignments we use for cat-
egory projection, and the agenda limit b’ for derivation projection. In
initial trials, we experimented with different values for '. The higher it
is, the more sentence pairs receive at least one target-language deriva-
tion and can be used for training. However, we found that increasing
the limit beyond 256 did not improve final results much and therefore
used this value for all following experiments.

We then experimented with different values for n, the number of
alignments used for category projection. Too few, and the lexical items
necessary for successful derivation projection may not be generated for
many training examples. Too many, and the parsing agenda is polluted
with many incorrect lexical items, and derivation projection aborts due
to the agenda limit b'. Figure[7.8shows how the number of usable train-
ing examples varies as a function of n.

With the target-language derivations found, we train our parser for
the target language on it, using Algorithm 7.3/ (BeamTrAaIN). We follow
Zhang and Clark| (2011) in using a beam width of b = 16 and initializ-
ing all model parameters to 0. We measure performance as f-score ac-
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usable training examples

3 4 5 6 7
number of alignments used (n)

Figure 7.8: Percentage of successfully projected training examples de-
pending on the number of n-best alignments (with &’ = 256).

cording to the graph match measure, on the silver-standard annotated
development data. The three hyperparameters influencing results are
n, the lexical cutoff factor c and the number of training iterations 7". Re-
sults in Figure[7.8suggest that n = 3 is the optimal value for n, but more
training examples may not necessarily translate to better performance.
So we included all three hyperparameters in a parameter sweep on the
development data, whose results are shown in Figure We use the
highest-scoring model found in the sweep (n = 3, ¢ = 0.2, T = 9) for
final testing on the 150-sentence gold standard.

7.3.4 Results and Discussion

Inspecting the results of the parameter sweep in Figure it is clear
that our semantic parser learns a lot in the first training iteration, after
which learning is slow and not substantial after around the fifth itera-
tion.

Table[7.1|shows the results of evaluating the highest-scoring found
model on the gold-standard annotated test data, comparing the perfor-
mance of our cross-lingually learned system on Dutch against the base-
line and against C&C/Boxer’s performance on the English versions of
the same sentences.
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n=1

lexicall cutoff factor (c)

4 5 6
training iterations (T)
n=2

lexicall cutoff factor (c)
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training iterations (T)
n=3

lexicall cutoff factor (c)

4 5 6
training iterations (T)
n=4

lexicall cutoff factor (c)

5 6
training iterations (T)

n=5

lexicall cutoff factor (c)

o 1 2 3 4

5 6
training iterations (T)

Figure 7.9: Development set f-score (in percent) depending on n-best
alignments, lexical cutoff factor ¢ and training iterations 7.
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Table 7.1: Gold-standard match f-score for Boxer, our baseline and our
best cross-lingually trained model.

Language English Dutch

System C&C/Boxer Baseline Our system
Full 58.40 26.71 42.99
Ignoring WordNet senses 69.06 36.67 60.23
Ignoring VerbNet/LIRICS roles 64.51 27.57 47.82
Ignoring other relation labels 59.18 27.57 43.39
Ignoring all 78.88 39.04 69.22

C&C/Boxer obtains an f-score of 58.40% on the gold standard. Al-
though the data, the meaning representation language and the evalua-
tion metric are not directly comparable, we note that this f-score is in the
same ballpark as current state-of-the-art open-domain semantic parsers
for English, e.g., those that participated in the recent Abstract Meaning
Representation Shared Task (May,2016). A large part of the errors come
from misidentifying word senses and semantic roles: “sloppy” evalua-
tions in which we treat all word senses, all roles and/or other relation
labels as equal give markedly higher f-scores of up to 78.88%.

Our learned system for Dutch scores around 15% lower than the
source-language system under the strict evaluation, at 42.99%. The gap
narrows to around 10% under the sloppy evaluation, where our sys-
tem scores up to 69.22%. The gap is expected for a number of reasons.
Firstly, the English system has the advantage of being based on an ex-
plicitly supervised syntactic parser. Secondly, the English system has
access to the full WordNet lexicon while the Dutch system only has ac-
cess to the words seen in the training data, resulting in many OOV items
at test time. This helps explain the especially large gap under the strict
evaluation. Thirdly, the system has to deal with noise from a number
of sources, including non-literal translations in the training data, noisy
word alignments, noisy lexical items resulting from the limitations of
our projection method (discussed in Chapter|[6) and automatically gen-
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erated hence noisy training data. Let us discuss in turn how each of
these challenges could be tackled in future work.

Lack of a Robust Syntactic Parser Given the great success of statisti-
cal syntactic parsing over the past decades and the very high accuracies
obtained by state-of-the-art systems, it is not surprising that practically
all broad-coverage semantic parsers to date rely on an external syntac-
tic parser to constrain the search space or to provide features (cf. Sec-
tion[3.7). These parsers are typically trained on datasets orders of mag-
nitudes larger than the automatically syntactically and semantically an-
notated training dataset we used here. To a certain degree, doing with-
out such a syntactic parser is unavoidable for the task we tackled here,
because the aim was to develop a method applicable to under-resourced
languages, implying that no such parser or data sufficient to train it ex-
ists. Nevertheless, if we want to apply our method to languages for
which a robust syntactic parser is availableﬁ we could extend it by us-
ing externally provided syntactic features to guide derivation projection
and the parser itself. Alternatively, one could train a system to assemble
meaning representations directly from target-language syntactic parses,
without ever generating target-language derivations for training.

OOV Items The problem of many unknown words at test time could
be addressed by (partially) separating lexical learning from grammar
learning (cf. Section[3.6). For example, one could mine larger amounts
of parallel (or comparable) text for pairs of target-language words and
WordNet senses. This could be done even with text that is too loosely
translated or too syntactically complex to work well with our current
derivation projection method.

Noisy Word Alignments The word alignments we use for category
projection are not all correct. In using multiple alternative word align-
ments, we have designed category projection for recall, not precision.
This may generate faulty lexical entries, but we count on derivation pro-
jection not being able to find derivations with the target interpretation

3 As is in fact the case for Dutch, see for example Bouma et al.{(2000).



7.3. Experiments and Results 201

S[b]\NP:
[taste]Q([a]Q(([of [@[beer])Q[pint])) 20
NP:
[a]@(([of]@[beer])@[pint]) 0
N: -
([of1@[beer])@[pint]
N\N:
[of]@[beer]
(S[b]\NP)/NP: NP/N: N:  (N\N)/NP: NP
[taste] [a] [pint] [of] [beer]
taste a pint of beer
NP|N: N|N: N: (S|NP)|NP:
[a] Az.(([of]Qz)Q[pint]) [beer] [taste]
>0
N:
([of1@[beer])@[pint]
NP: >
[a]@(([ofT@[beer])@]pint]) o
S[b]\NP: <

[taste]Q([a]Q(([of]Q[beer])@[pint]))

Figure 7.10: Derivation projection “succeeding” for a loose translation,
producing incorrect lexical entries for German: Glass means glass, not
pint, and trinken means drink, not taste. Example from Bos| (2014).
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using faulty lexical entries, or on parser learning assigning low weights
to those entries. However, it can happen that derivation projection hap-
pily succeeds in building a target-language derivation with the “cor-
rect” interpretation, but using wrong lexical entries. Presumably, this
is especially likely with structurally similar, but non-literal translations,
e.g., with idioms like kick the bucket /den Liffel abgeben (cf. Section[6.1.T)),
or with informative or loose translations. An example of such an “infe-
licitous” parallel derivation is shown in Figure Moreover, in part
due to the noisy word alignments, if derivation projection succeeds, it
typically produces more than one possible translation, resulting in mul-
tiple “correct” parser items in every generation. It is not clear in how
far this ambiguity hampers parser learning. Evaluating category pro-
jection and derivation projection in-vitro could shed some light on pos-
sible ways to address such problems.

Limitations of Derivation Projection In Chapter [} we identified a
number of sub-types of translation divergences where our automatic
approach to derivation projection produces analyses that do not corre-
spond to the distinctions and generalizations that a grammar engineer
would make. This results either in failing derivation projections and
therefore a loss of training data, or in training derivations using lexi-
cal items that generalize poorly and therefore presumably hamper par-
ser learning. Therefore, improving category projection and derivation
projection may be an important area for improving the overall cross-
lingual learning approach. For example, projected lexical entries could
switch to a factored representation a la (Kwiatkowski et al., 2011;|Wang
et al., 2014), with categories and interpretation schemas stored sepa-
rately from specific non-logical symbols. This would have the advan-
tage of being able to project interpretations while possibly using differ-
ent categories that may match the target-language construction better.
It may also help cross-lingual semantic parsing in the same way it helps
mono-lingual parsing, namely by enabling generalizations that make
learning more efficient.
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Automatically Generated Training Data Outside of category projec-
tion and derivation projection, which themselves are noisy, additional
noise is introduced by the system that is used to create the source-lan-
guage derivations. Higher-quality training data could be obtained by
manually annotating the source-language side of parallel corpora. The
more translations into different languages exist, the more semantic pars-
ers could then be bootstrapped with our method. One recent effort to
systematically annotate a multilingual parallel corpus with deep mean-
ing representations is the Parallel Meaning Bank (PMB; Bjerva et al.,
2014).

7.4 Conclusions

We have presented a method for training a broad-coverage semantic
parser for a target language cross-lingually by projecting CCG deriva-
tions from a source language to target-language translations. The pro-
jection method proceeds in two steps, category projection and derivation
projection, designed to handle the uncertainty resulting from automati-
cally induced word alignments. The trained parser is a standard shift-
reduce CCG parser with some extensions, e.g., to skip words and to
handle multiwords.

We trained a system for Dutch which achieves an f-score of 42.99%
under our strictest evaluation metric, compared to 58.40% for the corre-
sponding English system. The large gap is unsurprising, as our method
does not have access to a comparable supervised parser or comparable
lexical resources as the source-language system, and in addition has to
deal with multiple sources of noise. As we have outlined, there are a
number of ways to address these challenges, including unsupervised
lexical acquisition from large amounts of parallel data, investigation of
error sources in category projection and derivation projection, factored
lexicons as well as systematic manual annotation of data with multilin-
gual translations.

Despite the challenges remaining to be addressed, the method is
still potentially useful for target languages that lack adequate manu-
ally created computational grammars, lexical and annotated resources
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and where the creation of such grammars and resources would be too
expensive. It can also be used to bootstrap a semantic parser which is
then improved through manual engineering and annotation.
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Conclusions
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Chapter 8

Conclusions

Cross-lingual learning is the training of machine learning models for
processing of a natural target language while using few or no manually
created annotations or other resources for that target language—instead
using such resources for a source language and using parallel corpora to
project information from the source language to the target language.
Cross-lingual learning is attractive because the creation of linguistic re-
sources is very expensive at scale, and repeating this effort for multi-
ple languages is often infeasible. In practice, resource creation efforts
typically focus on a few, widely-spoken languages like English, leav-
ing other languages without comparable natural-language processing
tools. Cross-lingual learning can help bridge this gap.

The gap certainly exists for semantic parsing, i.e., learning to map
natural-language utterances to formal meaning representations. Work
to date has almost exclusively focused on English. In this thesis, we
therefore considered the problem of learning a broad-coverage seman-
tic parser cross-lingually.

We decided to use Combinatory Categorial Grammar (reviewed as
background in Chapter [2) as a grammatical framework because it is de-
signed to be applicable to all natural languages and maintains a high de-
gree of transparency between syntactic categories and semantic types,
which should make it helpful in abstracting away from cross-linguistic
differences in syntactic constructions. CCG also has an ample body of

207
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work in semantic parsing (reviewed in Chapter [3) on which we would
be able to draw to develop our method.

This led to four research questions, which we are now ready to an-
swer. Let us begin with the first one:

(i) Does CCG have the flexibility required for applying it to diverse
natural languages, meaning representation formalisms and pars-
ing strategies?

Seeing the broad range of semantic parsing tasks that CCG has suc-
cessfully been applied to (cf. Chapter [3), we were already strongly in-
clined to answer this question in the affirmative.

In Chapter |4}, we added another study to this body of work. It ad-
dressed a narrow-coverage task where natural-language instructions to
a robot have to be mapped into a formal, special-purpose meaning rep-
resentation language.

The task, although relatively small in scope, exhibits some of the
typical challenges of semantic parsing, including dealing with unedited
language, lexical ambiguity and a custom meaning representation lan-
guage exhibiting different structural properties from natural language.
We showed that CCG can be applied easily and successfully to induce
a probabilistic grammar for the task, despite several aspects not cov-
ered in standard CCG, like custom basic categories, semantically empty
words, a meaning representation language not based on the A-calculus
and interfacing with a spatial planner.

Our affirmative answer to the first research question thus holds up.
Let us turn to the second one:

(ii) Broad-coverage semantic parsing requires training data in the
form of text annotated with suitable meaning representations
such as Discourse Representations Structures (DRS). How can
the knowledge of humans be used effectively for building such
a corpus?

We provided one answer to this question in Chapter 5/ by describ-
ing how this is done in the Groningen Meaning Bank project: by com-
bining automatic and human annotation decisions in a clever way. We
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showed how this is facilitated by a mode of annotation where annota-
tion decisions (called Bits of Wisdom or Bows) from multiple sources are
integrated dynamically into a natural-language processing toolchain,
and where such decisions are largely at the token level. In particular,
we showed that a purely lexical mode of annotating quantifier scope is
powerful enough to obtain the desired reading in the vast majority of
cases.

We found that it remains difficult to obtain a large number of anno-
tations that can be considered gold standard, compared to other efforts
which rely less on automatic or crowdsourced annotation and more on
expert annotation, albeit in some cases targeting less “deep” meaning
representations. The difficulty of annotation highlights the need for se-
mantic parsers that require little explicit supervision to train, especially
when the process is to be repeated for multiple natural languages. Our
third research question addresses this:

(iii) One type of cross-lingual learning is annotation projection, the
projection of source-language annotations to target-language
annotations, followed by training on the target-language data
so annotated. In the case of CCG derivations, annotation pro-
jection amounts to automatic parallel semantic treebanking;:

e Is there an algorithm for doing this?
e Can it deal with translation divergences?

e Does it produce linguistically adequate analyses?

We proposed such an algorithm in Chapter [6| developed in several
steps, looking at several ways in which target-language sentences differ
from their source-language translations. We showed that it can success-
fully project many derivations. Evaluating it against the taxonomy of
translation divergences presented by Dorr| (1993), we found that it can
deal with thematic, structural, categorial, head-switching and confla-
tional divergences, albeit with certain limitations for each type. Some of
the limitations cause projection to fail for certain instances, others lead
to linguistically inadequate lexical items that are liable to generalize
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poorly. Some of these shortcomings could be addressed, e.g., by learn-
ing to split more synthetic source-language constructions into more an-
alytic target-language constructions, but given the variety of natural
language, it is unlikely that such an algorithm would ever be completely
error-free.

Our answer to the research question is thus that a derivation projec-
tion algorithm for CCG does exist, but cannot be relied upon to provide
linguistically adequate parallel analyses in all cases. It can, however, be
useful for providing a starting point for manual parallel treebanking, or
for producing target-language training data, provided that the learning
method is sufficiently robust to noise. This leads to our fourth and final
research question:

(iv) How can such projected derivations be used to train a broad-
coverage semantic parser?

We addressed this question in Chapter [/|by developing a method
to train such a parser. The method is based on the projection algo-
rithm developed in Chapter|6] but is modified in order to be able to use
automatic, hence uncertain and noisy, word alignments. In two steps
called category projection and derivation projection, a lexicon and train-
ing data for the target-language are generated, and a third step called
parser learning trains a shift-reduce parser with a global linear model,
using perceptron updates. Out-of-vocabulary words are dealt with at
test time based on lexical semantic schemas.

We showed that the approach can train a semantic parser for the
target language significantly outperforming a simple baseline. We also
found, unsurprisingly, that the cross-lingually trained parser’s perfor-
mance still lags considerably behind parsers which are able to draw
on gold-standard training data and lexical resources for their respec-
tive target language. However, we also pointed to a number of possible
ways of improving our method while keeping its desirable property of
relying on few target-language resources.

To conclude, we can thus say that cross-lingual training of broad-
coverage semantic parsers does indeed work—to a degree. The accu-
racy of the cross-lingually trained Dutch parser presented herein is still
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far from a point where one would want to use it for anything mission-
critical. However, this is still true for broad-coverage semantic parsing
in general, which remains a very challenging task even in the presence
of manually created training data for the target language.

The methods for derivation projection and cross-lingual semantic
parser training presented in this thesis can benefit future research in
two main ways. First, as monolingual methods for learning semantic
parsers improve, cross-lingual methods can help transfer these results
to many languages more cheaply and quickly than it would be possible
without them. Of course, where possible, manual semantic annotation for
each target language is to be preferred because it will generally produce
higher-quality training data than automatic projection. Thus, secondly,
derivation projection and cross-lingually trained parsers can be used to
assist with manual annotation, for example by providing initial auto-
matic analyses and having annotators correct them.
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